論文の概要: Entropy as a measure of attractiveness and socioeconomic complexity in
Rio de Janeiro metropolitan area
- arxiv url: http://arxiv.org/abs/2003.10340v1
- Date: Mon, 23 Mar 2020 15:58:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-28 07:35:38.932057
- Title: Entropy as a measure of attractiveness and socioeconomic complexity in
Rio de Janeiro metropolitan area
- Title(参考訳): リオデジャネイロ大都市圏における魅力と社会経済的複雑性の指標としてのエントロピー
- Authors: Maxime Lenormand, Horacio Samaniego, Julio C. Chaves, Vinicius F.
Vieira, Moacyr A. H. B. da Silva and Alexandre G. Evsukoff
- Abstract要約: 携帯電話のデータセットとエントロピーに基づく測度を用いて、位置の魅力を測定する。
その結果、エントロピーによって測定された特定の位置の魅力は、その位置の社会経済的地位の重要な記述者であることがわかった。
- 参考スコア(独自算出の注目度): 52.77024349608834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Defining and measuring spatial inequalities across the urban environment
remains a complex and elusive task that has been facilitated by the increasing
availability of large geolocated databases. In this study, we rely on a mobile
phone dataset and an entropy-based metric to measure the attractiveness of a
location in the Rio de Janeiro Metropolitan Area (Brazil) as the diversity of
visitors' location of residence. The results show that the attractiveness of a
given location measured by entropy is an important descriptor of the
socioeconomic status of the location, and can thus be used as a proxy for
complex socioeconomic indicators.
- Abstract(参考訳): 都市環境全体の空間的不等式の定義と測定は複雑で分かりにくい作業であり、大規模な位置情報データベースの可用性の向上によって促進されている。
本研究では,リオデジャネイロ大都市圏 (brazil) における訪問客の居住場所の多様性として,携帯電話データセットとエントロピーに基づく指標を用いて,居住地の魅力を測定した。
その結果、エントロピーによって測定された特定の位置の魅力は、その位置の社会経済状態の重要な記述者であり、複雑な社会経済指標のプロキシとして使用できることが示された。
関連論文リスト
- UrBench: A Comprehensive Benchmark for Evaluating Large Multimodal Models in Multi-View Urban Scenarios [60.492736455572015]
複雑な多視点都市シナリオにおけるLMM評価のためのベンチマークであるUrBenchを提案する。
UrBenchには、リージョンレベルとロールレベルの両方で、厳密にキュレートされた11.6Kの質問が含まれている。
21のLMMに対する評価は、現在のLMMが都市環境においていくつかの面で苦戦していることを示している。
論文 参考訳(メタデータ) (2024-08-30T13:13:35Z) - Geo-Encoder: A Chunk-Argument Bi-Encoder Framework for Chinese
Geographic Re-Ranking [61.60169764507917]
中国の地理的再ランクタスクは、検索された候補者の中で最も関連性の高い住所を見つけることを目的としている。
そこで我々は,中国語の地理的意味論をより効果的に統合する,革新的なフレームワークであるGeo-Encoderを提案する。
論文 参考訳(メタデータ) (2023-09-04T13:44:50Z) - On the need to move from a single indicator to a multi-dimensional
framework to measure accessibility to urban green [0.0]
本研究では, 都市におけるグリーンアクセシビリティの信頼性を評価するため, 単一メートル法の利用範囲について検討する。
その結果,都市中心部における緑地空間の空間分布と人口分布との複雑な相互作用から,単一指標の使用は差別の欠如につながる可能性が示唆された。
論文 参考訳(メタデータ) (2023-08-10T12:37:13Z) - Location retrieval using visible landmarks based qualitative place
signatures [0.7119463843130092]
定位位置シグネチャ(QPS)を用いた位置・場所を記述した定位位置探索法を提案する。
空間を個々のシグネチャを付加した場所セルに分割した後,その質的観察に基づいて,視聴者の可能な位置を効率的に同定する粗い位置探索法を提案する。
論文 参考訳(メタデータ) (2022-07-26T13:57:49Z) - On-device modeling of user's social context and familiar places from
smartphone-embedded sensor data [7.310043452300736]
ユーザの社会的文脈とその位置をモデル化するための,新しい,教師なし,軽量なアプローチを提案する。
ユーザとそのデバイス間の物理的およびサイバー的ソーシャルインタラクションに関連するデータを活用する。
日常の状況を認識するための3つの機械学習アルゴリズムの性能を示す。
論文 参考訳(メタデータ) (2022-05-18T08:32:26Z) - Neural Embeddings of Urban Big Data Reveal Emergent Structures in Cities [7.148078723492643]
都市部の異質性を利用したニューラルネットワーク(GNN)を提案する。
アメリカ合衆国の16大都市圏において,何百万もの携帯電話利用者による大規模高解像度モビリティデータセットを用いて,都市部コンポーネント間の複雑な関係をエンコードしていることを示す。
異なる郡で訓練されたモデルによって生成された埋め込みは、他の郡における創発的空間構造の50%から60%を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-10-24T07:13:14Z) - A variational Bayesian spatial interaction model for estimating revenue
and demand at business facilities [15.242014520266391]
本研究では,事業施設における潜在的な収益や需要を推定する問題について検討し,その発生メカニズムを解明する。
そこで我々はベイズ空間相互作用モデルを構築し,そのモデルを用いて特定の事業所の収益を確率論的に予測する。
我々は, 1500以上のパブと15万の顧客地域を含む, 英国ロンドンにおけるパブ活動のための実世界の大規模空間データセットを構築した。
論文 参考訳(メタデータ) (2021-08-05T13:03:20Z) - MugRep: A Multi-Task Hierarchical Graph Representation Learning
Framework for Real Estate Appraisal [57.28018917017665]
正確な不動産評価のためのマルチタスク階層グラフ表現学習(MugRep)フレームワークを提案する。
複数の都市データを取得し統合することにより、まず、複数の視点から不動産を包括的にプロファイルするリッチな特徴セットを構築する。
進化する不動産取引グラフとそれに対応するイベントグラフ畳み込みモジュールが提案され、不動産取引に非同期に時間的依存関係を組み込む。
論文 参考訳(メタデータ) (2021-07-12T03:51:44Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
本稿では, 生物系統学から得られた都市形態の数値分類法を提案する。
我々は同質の都市組織タイプを導出し、それら間の全体形態的類似性を決定することにより、都市形態の階層的分類を生成する。
フレーミングとプレゼンを行った後、プラハとアムステルダムの2都市でテストを行った。
論文 参考訳(メタデータ) (2021-04-30T12:47:52Z) - Magnify Your Population: Statistical Downscaling to Augment the Spatial
Resolution of Socioeconomic Census Data [48.7576911714538]
重要社会経済的属性の詳細な推定を導出する新しい統計的ダウンスケーリング手法を提案する。
選択された社会経済変数ごとに、ランダムフォレストモデルが元の国勢調査単位に基づいて訓練され、その後、微細なグリッド化された予測を生成するために使用される。
本研究では,この手法を米国の国勢調査データに適用し,ブロック群レベルで選択された社会経済変数を,300の空間分解能のグリッドにダウンスケールする。
論文 参考訳(メタデータ) (2020-06-23T16:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。