Synergic Adversarial Label Learning for Grading Retinal Diseases via
Knowledge Distillation and Multi-task Learning
- URL: http://arxiv.org/abs/2003.10607v4
- Date: Sat, 30 Jan 2021 13:55:21 GMT
- Title: Synergic Adversarial Label Learning for Grading Retinal Diseases via
Knowledge Distillation and Multi-task Learning
- Authors: Lie Ju, Xin Wang, Xin Zhao, Huimin Lu, Dwarikanath Mahapatra, Paul
Bonnington, Zongyuan Ge
- Abstract summary: Well-qualified doctors annotated images are very expensive and only a limited amount of data is available for various retinal diseases.
Some studies show that AMD and DR share some common features like hemorrhagic points and exudation but most classification algorithms only train those disease models independently.
We propose a method called synergic adversarial label learning (SALL) which leverages relevant retinal disease labels in both semantic and feature space as additional signals and train the model in a collaborative manner.
- Score: 29.46896757506273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The need for comprehensive and automated screening methods for retinal image
classification has long been recognized. Well-qualified doctors annotated
images are very expensive and only a limited amount of data is available for
various retinal diseases such as age-related macular degeneration (AMD) and
diabetic retinopathy (DR). Some studies show that AMD and DR share some common
features like hemorrhagic points and exudation but most classification
algorithms only train those disease models independently. Inspired by knowledge
distillation where additional monitoring signals from various sources is
beneficial to train a robust model with much fewer data. We propose a method
called synergic adversarial label learning (SALL) which leverages relevant
retinal disease labels in both semantic and feature space as additional signals
and train the model in a collaborative manner. Our experiments on DR and AMD
fundus image classification task demonstrate that the proposed method can
significantly improve the accuracy of the model for grading diseases. In
addition, we conduct additional experiments to show the effectiveness of SALL
from the aspects of reliability and interpretability in the context of medical
imaging application.
Related papers
- Improving Classification of Retinal Fundus Image Using Flow Dynamics
Optimized Deep Learning Methods [0.0]
Diabetic Retinopathy (DR) refers to a barrier that takes place in diabetes mellitus damaging the blood vessel network present in the retina.
It can take some time to perform a DR diagnosis using color fundus pictures because experienced clinicians are required to identify the tumors in the imagery used to identify the illness.
arXiv Detail & Related papers (2023-04-29T16:11:34Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide.
Most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices.
This study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification.
arXiv Detail & Related papers (2022-03-22T06:54:29Z) - Lesion-based Contrastive Learning for Diabetic Retinopathy Grading from
Fundus Images [2.498907460918493]
We propose a self-supervised framework, namely lesion-based contrastive learning for automated diabetic retinopathy grading.
Our proposed framework performs outstandingly on DR grading in terms of both linear evaluation and transfer capacity evaluation.
arXiv Detail & Related papers (2021-07-17T16:30:30Z) - Explainable Diabetic Retinopathy Detection and Retinal Image Generation [16.140110713539023]
We propose to exploit the interpretability of deep learning application in medical diagnosis.
By determining and isolating the neuron activation patterns on which diabetic retinopathy detector relies to make decisions, we demonstrate the direct relation between the isolated neuron activation and lesions for a pathological explanation.
To visualize the symptom encoded in the descriptor, we propose Patho-GAN, a new network to synthesize medically plausible retinal images.
arXiv Detail & Related papers (2021-07-01T08:30:04Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
Variance Aware Training (VAT) method exploits this property by introducing the variance error into the model loss function.
We validate VAT on three medical imaging datasets from diverse domains and various learning objectives.
arXiv Detail & Related papers (2021-05-28T21:34:04Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - Self-supervised Feature Learning via Exploiting Multi-modal Data for
Retinal Disease Diagnosis [28.428216831922228]
This paper presents a novel self-supervised feature learning method by effectively exploiting multi-modal data for retinal disease diagnosis.
Our objective learns both modality-invariant features and patient-similarity features.
We evaluate our method on two public benchmark datasets for retinal disease diagnosis.
arXiv Detail & Related papers (2020-07-21T19:49:45Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - Dynamic Graph Correlation Learning for Disease Diagnosis with Incomplete
Labels [66.57101219176275]
Disease diagnosis on chest X-ray images is a challenging multi-label classification task.
We propose a Disease Diagnosis Graph Convolutional Network (DD-GCN) that presents a novel view of investigating the inter-dependency among different diseases.
Our method is the first to build a graph over the feature maps with a dynamic adjacency matrix for correlation learning.
arXiv Detail & Related papers (2020-02-26T17:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.