Self-supervised Feature Learning via Exploiting Multi-modal Data for
Retinal Disease Diagnosis
- URL: http://arxiv.org/abs/2007.11067v1
- Date: Tue, 21 Jul 2020 19:49:45 GMT
- Title: Self-supervised Feature Learning via Exploiting Multi-modal Data for
Retinal Disease Diagnosis
- Authors: Xiaomeng Li, Mengyu Jia, Md Tauhidul Islam, Lequan Yu, Lei Xing
- Abstract summary: This paper presents a novel self-supervised feature learning method by effectively exploiting multi-modal data for retinal disease diagnosis.
Our objective learns both modality-invariant features and patient-similarity features.
We evaluate our method on two public benchmark datasets for retinal disease diagnosis.
- Score: 28.428216831922228
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The automatic diagnosis of various retinal diseases from fundus images is
important to support clinical decision-making. However, developing such
automatic solutions is challenging due to the requirement of a large amount of
human-annotated data. Recently, unsupervised/self-supervised feature learning
techniques receive a lot of attention, as they do not need massive annotations.
Most of the current self-supervised methods are analyzed with single imaging
modality and there is no method currently utilize multi-modal images for better
results. Considering that the diagnostics of various vitreoretinal diseases can
greatly benefit from another imaging modality, e.g., FFA, this paper presents a
novel self-supervised feature learning method by effectively exploiting
multi-modal data for retinal disease diagnosis. To achieve this, we first
synthesize the corresponding FFA modality and then formulate a patient
feature-based softmax embedding objective. Our objective learns both
modality-invariant features and patient-similarity features. Through this
mechanism, the neural network captures the semantically shared information
across different modalities and the apparent visual similarity between
patients. We evaluate our method on two public benchmark datasets for retinal
disease diagnosis. The experimental results demonstrate that our method clearly
outperforms other self-supervised feature learning methods and is comparable to
the supervised baseline.
Related papers
- Robust and Explainable Framework to Address Data Scarcity in Diagnostic Imaging [6.744847405966574]
We introduce a novel ensemble framework called Efficient Transfer and Self-supervised Learning based Ensemble Framework' (ETSEF)
ETSEF leverages features from multiple pre-trained deep learning models to efficiently learn powerful representations from a limited number of data samples.
Five independent medical imaging tasks, including endoscopy, breast cancer, monkeypox, brain tumour, and glaucoma detection, were tested to demonstrate ETSEF's effectiveness and robustness.
arXiv Detail & Related papers (2024-07-09T05:48:45Z) - Distributed Federated Learning-Based Deep Learning Model for Privacy MRI Brain Tumor Detection [11.980634373191542]
Distributed training can facilitate the processing of large medical image datasets, and improve the accuracy and efficiency of disease diagnosis.
This paper presents an innovative approach to medical image classification, leveraging Federated Learning (FL) to address the dual challenges of data privacy and efficient disease diagnosis.
arXiv Detail & Related papers (2024-04-15T09:07:19Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Joint Self-Supervised and Supervised Contrastive Learning for Multimodal
MRI Data: Towards Predicting Abnormal Neurodevelopment [5.771221868064265]
We present a novel joint self-supervised and supervised contrastive learning method to learn the robust latent feature representation from multimodal MRI data.
Our method has the capability to facilitate computer-aided diagnosis within clinical practice, harnessing the power of multimodal data.
arXiv Detail & Related papers (2023-12-22T21:05:51Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - A Novel Collaborative Self-Supervised Learning Method for Radiomic Data [3.5213632537596604]
We present the first novel collaborative self-supervised learning method to solve the challenge of insufficient labeled radiomic data.
Our method collaboratively learns the robust latent feature representations from radiomic data in a self-supervised manner to reduce human annotation efforts.
arXiv Detail & Related papers (2023-02-20T07:15:28Z) - GraVIS: Grouping Augmented Views from Independent Sources for
Dermatology Analysis [52.04899592688968]
We propose GraVIS, which is specifically optimized for learning self-supervised features from dermatology images.
GraVIS significantly outperforms its transfer learning and self-supervised learning counterparts in both lesion segmentation and disease classification tasks.
arXiv Detail & Related papers (2023-01-11T11:38:37Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - Synergic Adversarial Label Learning for Grading Retinal Diseases via
Knowledge Distillation and Multi-task Learning [29.46896757506273]
Well-qualified doctors annotated images are very expensive and only a limited amount of data is available for various retinal diseases.
Some studies show that AMD and DR share some common features like hemorrhagic points and exudation but most classification algorithms only train those disease models independently.
We propose a method called synergic adversarial label learning (SALL) which leverages relevant retinal disease labels in both semantic and feature space as additional signals and train the model in a collaborative manner.
arXiv Detail & Related papers (2020-03-24T01:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.