Perfect edge state transfer on cubelike graphs
- URL: http://arxiv.org/abs/2003.10624v2
- Date: Sat, 28 Mar 2020 05:48:27 GMT
- Title: Perfect edge state transfer on cubelike graphs
- Authors: Xiwang Cao
- Abstract summary: We show that every bent function, and some semi-bent functions as well, can produce some graphs having PEST.
Notably, using our method, one can obtain some classes of infinite graphs possessing PEST.
- Score: 13.477892615179481
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Perfect (quantum) state transfer has been proved to be an effective model for
quantum information processing. In this paper, we give a characterization of
cubelike graphs having perfect edge state transfer. By using a lifting
technique, we show that every bent function, and some semi-bent functions as
well, can produce some graphs having PEST. Some concrete constructions of such
graphs are provided. Notably, using our method, one can obtain some classes of
infinite graphs possessing PEST.
Related papers
- A generalization of quantum pair state transfer [0.0]
An $s$-pair state in a graph is a quantum state of the form $mathbfe_u+smathbfe_v$.
We develop the theory of perfect $s$-pair state transfer in continuous quantum walks.
arXiv Detail & Related papers (2024-04-25T14:45:49Z) - Graph Generation via Spectral Diffusion [51.60814773299899]
We present GRASP, a novel graph generative model based on 1) the spectral decomposition of the graph Laplacian matrix and 2) a diffusion process.
Specifically, we propose to use a denoising model to sample eigenvectors and eigenvalues from which we can reconstruct the graph Laplacian and adjacency matrix.
Our permutation invariant model can also handle node features by concatenating them to the eigenvectors of each node.
arXiv Detail & Related papers (2024-02-29T09:26:46Z) - Graph Signal Sampling for Inductive One-Bit Matrix Completion: a
Closed-form Solution [112.3443939502313]
We propose a unified graph signal sampling framework which enjoys the benefits of graph signal analysis and processing.
The key idea is to transform each user's ratings on the items to a function (signal) on the vertices of an item-item graph.
For the online setting, we develop a Bayesian extension, i.e., BGS-IMC which considers continuous random Gaussian noise in the graph Fourier domain.
arXiv Detail & Related papers (2023-02-08T08:17:43Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
Generation of graphs is a major challenge for real-world tasks that require understanding the complex nature of their non-Euclidean structures.
We propose a generative framework that models the topology of graphs by explicitly learning the final graph structures of the diffusion process.
arXiv Detail & Related papers (2023-02-07T17:07:46Z) - Key graph properties affecting transport efficiency of flip-flop Grover
percolated quantum walks [0.0]
We study quantum walks with the flip-flop shift operator and the Grover coin.
We show how the position of the source and sink together with the graph geometry and its modifications affect transport.
This gives us a deep insight into processes where elongation or addition of dead-end subgraphs may surprisingly result in enhanced transport.
arXiv Detail & Related papers (2022-02-19T11:55:21Z) - Quantum simulation of perfect state transfer on weighted cubelike graphs [0.0]
A continuous-time quantum walk on a graph evolves according to the unitary operator $e-iAt$.
Perfect state transfer (PST) in a quantum walk is the transfer of a quantum state from one node to another node with $100%$ fidelity.
arXiv Detail & Related papers (2021-10-30T10:42:54Z) - Perfect State Transfer in Weighted Cubelike Graphs [0.0]
A continuous-time quantum random walk describes the motion of a quantum mechanical particle on a graph.
We generalize the PST or periodicity of cubelike graphs to that of weighted cubelike graphs.
arXiv Detail & Related papers (2021-09-26T13:44:44Z) - Hamiltonian systems, Toda lattices, Solitons, Lax Pairs on weighted
Z-graded graphs [62.997667081978825]
We identify conditions which allow one to lift one dimensional solutions to solutions on graphs.
We show that even for a simple example of a topologically interesting graph the corresponding non-trivial Lax pairs and associated unitary transformations do not lift to a Lax pair on the Z-graded graph.
arXiv Detail & Related papers (2020-08-11T17:58:13Z) - GraphOpt: Learning Optimization Models of Graph Formation [72.75384705298303]
We propose an end-to-end framework that learns an implicit model of graph structure formation and discovers an underlying optimization mechanism.
The learned objective can serve as an explanation for the observed graph properties, thereby lending itself to transfer across different graphs within a domain.
GraphOpt poses link formation in graphs as a sequential decision-making process and solves it using maximum entropy inverse reinforcement learning algorithm.
arXiv Detail & Related papers (2020-07-07T16:51:39Z) - Spectra of Perfect State Transfer Hamiltonians on Fractal-Like Graphs [62.997667081978825]
We study the spectral features, on fractal-like graphs, of Hamiltonians which exhibit the special property of perfect quantum state transfer.
The essential goal is to develop the theoretical framework for understanding the interplay between perfect quantum state transfer, spectral properties, and the geometry of the underlying graph.
arXiv Detail & Related papers (2020-03-25T02:46:14Z) - Perfect State Transfer on Oriented Graphs [0.0]
We study the phenomena, unique to oriented graphs, of multiple state transfer.
We give a characterization of multiple state transfer, and a new example of a graph where it occurs.
arXiv Detail & Related papers (2020-02-11T20:34:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.