Spectra of Perfect State Transfer Hamiltonians on Fractal-Like Graphs
- URL: http://arxiv.org/abs/2003.11190v2
- Date: Sat, 15 Aug 2020 01:53:23 GMT
- Title: Spectra of Perfect State Transfer Hamiltonians on Fractal-Like Graphs
- Authors: Gamal Mograby, Maxim Derevyagin, Gerald V. Dunne, Alexander Teplyaev
- Abstract summary: We study the spectral features, on fractal-like graphs, of Hamiltonians which exhibit the special property of perfect quantum state transfer.
The essential goal is to develop the theoretical framework for understanding the interplay between perfect quantum state transfer, spectral properties, and the geometry of the underlying graph.
- Score: 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we study the spectral features, on fractal-like graphs, of
Hamiltonians which exhibit the special property of perfect quantum state
transfer: the transmission of quantum states without dissipation. The essential
goal is to develop the theoretical framework for understanding the interplay
between perfect quantum state transfer, spectral properties, and the geometry
of the underlying graph, in order to design novel protocols for applications in
quantum information science. We present a new lifting and gluing construction,
and use this to prove results concerning an inductive spectral structure,
applicable to a wide variety of fractal-like graphs. We illustrate this
construction with explicit examples for several classes of diamond graphs.
Related papers
- Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - HoloNets: Spectral Convolutions do extend to Directed Graphs [59.851175771106625]
Conventional wisdom dictates that spectral convolutional networks may only be deployed on undirected graphs.
Here we show this traditional reliance on the graph Fourier transform to be superfluous.
We provide a frequency-response interpretation of newly developed filters, investigate the influence of the basis used to express filters and discuss the interplay with characteristic operators on which networks are based.
arXiv Detail & Related papers (2023-10-03T17:42:09Z) - Graph-theoretic insights on the constructability of complex entangled states [0.24578723416255752]
We introduce the technique of local sparsification on experiment graphs, using which we answer a crucial open question in experimental quantum optics.
This provides us with more insights into quantum resource theory, the limitation of specific quantum photonic systems and initiates the use of graph-theoretic techniques for designing quantum physics experiments.
arXiv Detail & Related papers (2023-04-13T11:13:17Z) - Equivariant Quantum Graph Circuits [10.312968200748116]
We propose equivariant quantum graph circuits (EQGCs) as a class of parameterized quantum circuits with strong inductive bias for learning over graph-structured data.
Our theoretical perspective on quantum graph machine learning methods opens many directions for further work, and could lead to models with capabilities beyond those of classical approaches.
arXiv Detail & Related papers (2021-12-10T00:14:12Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
Convolutional neural networks have been widely applied to hyperspectral image classification.
Recent methods attempt to address this issue by performing graph convolutions on spatial topologies.
arXiv Detail & Related papers (2021-06-26T06:24:51Z) - Holographic tensor network models and quantum error correction: A
topical review [78.28647825246472]
Recent progress in studies of holographic dualities has led to a confluence with concepts and techniques from quantum information theory.
A particularly successful approach has involved capturing holographic properties by means of tensor networks.
arXiv Detail & Related papers (2021-02-04T14:09:21Z) - Quantum gravity states, entanglement graphs and second-quantized tensor
networks [0.0]
In recent years, the import of quantum information techniques in quantum gravity opened new perspectives in the study of the microscopic structure of spacetime.
We contribute to such a program by establishing a precise correspondence between the quantum information formalism of tensor networks (TN), in the case of projected entangled-pair states (PEPS) generalised to a second-quantized framework, and group field theory (GFT) states.
arXiv Detail & Related papers (2020-12-23T12:20:25Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Bridging the Gap Between Spectral and Spatial Domains in Graph Neural
Networks [8.563354084119062]
We show some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain.
The proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain.
arXiv Detail & Related papers (2020-03-26T01:49:24Z) - Topologically induced spectral behavior: the example of quantum graphs [0.0]
We show that a nontrivial topology of the configuration space can give rise to a rich variety of spectral types.
We also address the question about the number of open spectral gaps and show that it could be nonzero and finite.
arXiv Detail & Related papers (2020-03-13T10:26:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.