論文の概要: Re-Training StyleGAN -- A First Step Towards Building Large, Scalable
Synthetic Facial Datasets
- arxiv url: http://arxiv.org/abs/2003.10847v1
- Date: Tue, 24 Mar 2020 13:47:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-20 08:15:04.833080
- Title: Re-Training StyleGAN -- A First Step Towards Building Large, Scalable
Synthetic Facial Datasets
- Title(参考訳): StyleGAN - 大規模でスケーラブルな顔データ構築に向けた第一歩
- Authors: Viktor Varkarakis, Shabab Bazrafkan, Peter Corcoran
- Abstract要約: StyleGANは、ランダムな2Dの高品質な合成顔データサンプルを生成する、最先端の対向ネットワークアーキテクチャである。
私たちは、それをいくつかの代替のパブリックデータセットで再トレーニングした経験を示します。
合成顔データの大規模でスケーラブルなデータセット構築におけるこのツールの役割についても論じる。
- 参考スコア(独自算出の注目度): 0.6875312133832077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: StyleGAN is a state-of-art generative adversarial network architecture that
generates random 2D high-quality synthetic facial data samples. In this paper,
we recap the StyleGAN architecture and training methodology and present our
experiences of retraining it on a number of alternative public datasets.
Practical issues and challenges arising from the retraining process are
discussed. Tests and validation results are presented and a comparative
analysis of several different re-trained StyleGAN weightings is provided 1. The
role of this tool in building large, scalable datasets of synthetic facial data
is also discussed.
- Abstract(参考訳): StyleGANは、ランダムな2Dの高品質な合成顔データサンプルを生成する、最先端の対向ネットワークアーキテクチャである。
本稿では,StyleGANのアーキテクチャとトレーニング手法を再考し,いくつかの代替データセット上で再トレーニングを行った経験について述べる。
再訓練プロセスから生じる実践的な問題と課題について論じる。
実験結果と検証結果が提示され、複数の異なる再訓練されたスタイルGAN重み付けの比較分析が提供される。
合成顔データの大規模でスケーラブルなデータセット構築におけるこのツールの役割についても論じる。
関連論文リスト
- Synthetic Image Learning: Preserving Performance and Preventing Membership Inference Attacks [5.0243930429558885]
本稿では,下流分類器の学習のための合成データの生成と利用を最適化するパイプラインである知識リサイクル(KR)を紹介する。
このパイプラインの核心は生成的知識蒸留(GKD)であり、情報の品質と有用性を大幅に向上させる技術が提案されている。
その結果、実データと合成データでトレーニングされたモデルと、実データでトレーニングされたモデルとの性能差が著しく低下した。
論文 参考訳(メタデータ) (2024-07-22T10:31:07Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
本研究では,実世界のパターンを持つ多様な合成シーンを生成可能なベイズネットワークを提案する。
一連の実験は、既存の最先端の事前学習手法に比べて、我々の手法が一貫した優位性を示す。
論文 参考訳(メタデータ) (2024-06-17T07:43:53Z) - Second Edition FRCSyn Challenge at CVPR 2024: Face Recognition Challenge in the Era of Synthetic Data [104.45155847778584]
本稿では,合成データ時代における第2回顔認識チャレンジの概要について述べる。
FRCSynは、現在の技術的制限に対処するために、顔認識における合成データの使用について調査することを目的としている。
論文 参考訳(メタデータ) (2024-04-16T08:15:10Z) - SDFR: Synthetic Data for Face Recognition Competition [51.9134406629509]
大規模な顔認識データセットは、インターネットをクロールして個人の同意なしに収集し、法的、倫理的、プライバシー上の懸念を提起する。
近年、ウェブクローリングされた顔認識データセットにおける懸念を軽減するために、合成顔認識データセットの生成が提案されている。
本稿では,第18回IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024)と共同で開催されているSynthetic Data for Face Recognition (SDFR)コンペティションの概要を紹介する。
SDFRコンペティションは2つのタスクに分けられ、参加者は新しい合成データセットまたは/または既存のデータセットを使用して顔認識システムを訓練することができる。
論文 参考訳(メタデータ) (2024-04-06T10:30:31Z) - Towards In-Vehicle Multi-Task Facial Attribute Recognition:
Investigating Synthetic Data and Vision Foundation Models [8.54530542456452]
車両の乗客の顔の特徴を認識する複雑なマルチタスクモデルを訓練するための合成データセットの有用性について検討する。
我々の研究は直感に反する発見を明らかにし、特に特定のマルチタスクコンテキストにおいて、ViTよりもResNetの方が優れた性能を示した。
論文 参考訳(メタデータ) (2024-03-10T04:17:54Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets [83.749895930242]
そこで本研究では,高品質な自然主義的合成隠蔽顔を製造するための2つの手法を提案する。
両手法の有効性とロバスト性を実証的に示す。
我々は,RealOccとRealOcc-Wildという,微細なアノテーションを付加した高精細な実世界の顔データセットを2つ提示する。
論文 参考訳(メタデータ) (2022-05-12T17:03:57Z) - Style-Hallucinated Dual Consistency Learning for Domain Generalized
Semantic Segmentation [117.3856882511919]
本稿では、ドメインシフトを処理するためのStyle-HAllucinated Dual consistEncy Learning(SHADE)フレームワークを提案する。
SHADEは3つの実世界のデータセットの平均mIoUに対して5.07%と8.35%の精度で改善し、最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2022-04-06T02:49:06Z) - On the use of automatically generated synthetic image datasets for
benchmarking face recognition [2.0196229393131726]
GAN(Generative Adversarial Networks)の最近の進歩は、実際のデータセットを合成データセットで置き換える経路を提供する。
現実的な顔画像を合成するためのGAN(Generative Adversarial Networks)の最近の進歩は、実際のデータセットを合成データセットで置き換える経路を提供する。
合成データセットのベンチマーク結果は、良い置換であり、多くの場合、実際のデータセットのベンチマークと同様のエラー率とシステムランキングを提供する。
論文 参考訳(メタデータ) (2021-06-08T09:54:02Z) - Synthetic Data and Hierarchical Object Detection in Overhead Imagery [0.0]
衛星画像における低・ゼロサンプル学習を向上させるための新しい合成データ生成および拡張技術を開発した。
合成画像の有効性を検証するために,検出モデルと2段階モデルの訓練を行い,実際の衛星画像上で得られたモデルを評価する。
論文 参考訳(メタデータ) (2021-01-29T22:52:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。