論文の概要: Second Edition FRCSyn Challenge at CVPR 2024: Face Recognition Challenge in the Era of Synthetic Data
- arxiv url: http://arxiv.org/abs/2404.10378v1
- Date: Tue, 16 Apr 2024 08:15:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 17:33:19.960731
- Title: Second Edition FRCSyn Challenge at CVPR 2024: Face Recognition Challenge in the Era of Synthetic Data
- Title(参考訳): CVPR 2024第2版FRCSynチャレンジ:合成データ時代の顔認識チャレンジ
- Authors: Ivan DeAndres-Tame, Ruben Tolosana, Pietro Melzi, Ruben Vera-Rodriguez, Minchul Kim, Christian Rathgeb, Xiaoming Liu, Aythami Morales, Julian Fierrez, Javier Ortega-Garcia, Zhizhou Zhong, Yuge Huang, Yuxi Mi, Shouhong Ding, Shuigeng Zhou, Shuai He, Lingzhi Fu, Heng Cong, Rongyu Zhang, Zhihong Xiao, Evgeny Smirnov, Anton Pimenov, Aleksei Grigorev, Denis Timoshenko, Kaleb Mesfin Asfaw, Cheng Yaw Low, Hao Liu, Chuyi Wang, Qing Zuo, Zhixiang He, Hatef Otroshi Shahreza, Anjith George, Alexander Unnervik, Parsa Rahimi, Sébastien Marcel, Pedro C. Neto, Marco Huber, Jan Niklas Kolf, Naser Damer, Fadi Boutros, Jaime S. Cardoso, Ana F. Sequeira, Andrea Atzori, Gianni Fenu, Mirko Marras, Vitomir Štruc, Jiang Yu, Zhangjie Li, Jichun Li, Weisong Zhao, Zhen Lei, Xiangyu Zhu, Xiao-Yu Zhang, Bernardo Biesseck, Pedro Vidal, Luiz Coelho, Roger Granada, David Menotti,
- Abstract要約: 本稿では,合成データ時代における第2回顔認識チャレンジの概要について述べる。
FRCSynは、現在の技術的制限に対処するために、顔認識における合成データの使用について調査することを目的としている。
- 参考スコア(独自算出の注目度): 104.45155847778584
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Synthetic data is gaining increasing relevance for training machine learning models. This is mainly motivated due to several factors such as the lack of real data and intra-class variability, time and errors produced in manual labeling, and in some cases privacy concerns, among others. This paper presents an overview of the 2nd edition of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) organized at CVPR 2024. FRCSyn aims to investigate the use of synthetic data in face recognition to address current technological limitations, including data privacy concerns, demographic biases, generalization to novel scenarios, and performance constraints in challenging situations such as aging, pose variations, and occlusions. Unlike the 1st edition, in which synthetic data from DCFace and GANDiffFace methods was only allowed to train face recognition systems, in this 2nd edition we propose new sub-tasks that allow participants to explore novel face generative methods. The outcomes of the 2nd FRCSyn Challenge, along with the proposed experimental protocol and benchmarking contribute significantly to the application of synthetic data to face recognition.
- Abstract(参考訳): 機械学習モデルのトレーニングにおいて、合成データが関連性を高めている。
これは主に、実際のデータ不足やクラス内の多様性、手動ラベリングで生成された時間とエラー、場合によってはプライバシーに関する懸念など、いくつかの要因によって動機付けられている。
本稿では,CVPR 2024で組織された第2回顔認識チャレンジ(FRCSyn)の概要について述べる。
FRCSynは、データプライバシの懸念、人口統計バイアス、新しいシナリオへの一般化、高齢化、ポーズのバリエーション、オクルージョンといった困難な状況におけるパフォーマンス制約など、現在の技術的制限に対処するために、顔認識における合成データの使用について調査することを目的としている。
第1版とは異なり、DCFace法とGANDiffFace法から合成されたデータは、顔認識システムを訓練することしかできず、この第2版では、参加者が新しい顔生成方法を探求できる新しいサブタスクを提案する。
第2回FRCSynチャレンジの結果は、提案された実験プロトコルとベンチマークと共に、顔認識への合成データの適用に大きく貢献した。
関連論文リスト
- SDFR: Synthetic Data for Face Recognition Competition [51.9134406629509]
大規模な顔認識データセットは、インターネットをクロールして個人の同意なしに収集し、法的、倫理的、プライバシー上の懸念を提起する。
近年、ウェブクローリングされた顔認識データセットにおける懸念を軽減するために、合成顔認識データセットの生成が提案されている。
本稿では,第18回IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024)と共同で開催されているSynthetic Data for Face Recognition (SDFR)コンペティションの概要を紹介する。
SDFRコンペティションは2つのタスクに分けられ、参加者は新しい合成データセットまたは/または既存のデータセットを使用して顔認識システムを訓練することができる。
論文 参考訳(メタデータ) (2024-04-06T10:30:31Z) - If It's Not Enough, Make It So: Reducing Authentic Data Demand in Face Recognition through Synthetic Faces [16.977459035497162]
大規模な顔データセットは、主にWebベースのイメージから作成され、明示的なユーザの同意が欠如している。
本稿では,合成顔データを用いて効果的な顔認識モデルの訓練を行う方法について検討する。
論文 参考訳(メタデータ) (2024-04-04T15:45:25Z) - FRCSyn Challenge at WACV 2024:Face Recognition Challenge in the Era of
Synthetic Data [82.5767720132393]
本稿では,WACV 2024 で組織された FRCSyn における顔認識チャレンジの概要について述べる。
これは、顔認識における合成データの利用を探求し、テクノロジーの既存の限界に対処する最初の国際的課題である。
論文 参考訳(メタデータ) (2023-11-17T12:15:40Z) - SynthDistill: Face Recognition with Knowledge Distillation from
Synthetic Data [8.026313049094146]
最先端の顔認識ネットワークは計算コストが高く、モバイルアプリケーションでは利用できないことが多い。
本稿では,教師の事前学習した顔認識モデルの知識を合成データを用いて抽出し,軽量な顔認識モデルを訓練するための新しい枠組みを提案する。
我々は、識別ラベルのない合成顔画像を用いて、合成データセットのクラス内変動生成における問題を緩和する。
論文 参考訳(メタデータ) (2023-08-28T19:15:27Z) - Synthetic Data for Face Recognition: Current State and Future Prospects [14.288753326973984]
本研究の目的は,顔認識における合成顔データの利用事例を明確かつ構造化した画像を提供することである。
本稿では,顔認識における合成データの利用に直面する課題と,顔認識分野における合成データの今後の展望について論じる。
論文 参考訳(メタデータ) (2023-05-01T18:25:22Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
我々は、ID混在(IM)とドメイン混在(DM)を併用したSynFaceを考案し、パフォーマンスギャップを緩和する。
また、合成顔画像の系統的実験分析を行い、合成データを顔認識に効果的に活用する方法についての知見を提供する。
論文 参考訳(メタデータ) (2021-08-18T03:41:54Z) - Hide-and-Seek Privacy Challenge [88.49671206936259]
NeurIPS 2020 Hide-and-Seek Privacy Challengeは、両方の問題を解決するための新しい2トラックの競争だ。
我々の頭から頭までのフォーマットでは、新しい高品質な集中ケア時系列データセットを用いて、合成データ生成トラック(「ヒッシャー」)と患者再識別トラック(「シーカー」)の参加者が直接対決する。
論文 参考訳(メタデータ) (2020-07-23T15:50:59Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
顔表情の合成と認識を効果的に行うための新しい統合深層学習法を提案する。
提案手法は, 2段階の学習手順を伴い, まず, 表情の異なる顔画像を生成するために, 表情合成生成対向ネットワーク (FESGAN) を事前訓練する。
実画像と合成画像間のデータバイアスの問題を軽減するために,新しい実データ誘導バックプロパゲーション(RDBP)アルゴリズムを用いたクラス内損失を提案する。
論文 参考訳(メタデータ) (2020-02-06T10:56:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。