論文の概要: Learning to Reconstruct Confocal Microscopy Stacks from Single Light
Field Images
- arxiv url: http://arxiv.org/abs/2003.11004v1
- Date: Tue, 24 Mar 2020 17:46:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-20 09:44:07.683883
- Title: Learning to Reconstruct Confocal Microscopy Stacks from Single Light
Field Images
- Title(参考訳): 単一光場画像からの共焦点顕微鏡スタックの再構成
- Authors: Josue Page, Federico Saltarin, Yury Belyaev, Ruth Lyck, Paolo Favaro
- Abstract要約: 我々は,U-Netの設計に触発された新しいニューラルネットワークアーキテクチャであるLFMNetを紹介する。
解像度は112x112x57.6$mu m3$を50ミリ秒で再現できる。
スキャン時間と記憶空間の大幅な減少のため,我々の装置と方法はリアルタイム3D顕微鏡に直接適用できる。
- 参考スコア(独自算出の注目度): 19.24428734909019
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel deep learning approach to reconstruct confocal microscopy
stacks from single light field images. To perform the reconstruction, we
introduce the LFMNet, a novel neural network architecture inspired by the U-Net
design. It is able to reconstruct with high-accuracy a 112x112x57.6$\mu m^3$
volume (1287x1287x64 voxels) in 50ms given a single light field image of
1287x1287 pixels, thus dramatically reducing 720-fold the time for confocal
scanning of assays at the same volumetric resolution and 64-fold the required
storage. To prove the applicability in life sciences, our approach is evaluated
both quantitatively and qualitatively on mouse brain slices with fluorescently
labelled blood vessels. Because of the drastic reduction in scan time and
storage space, our setup and method are directly applicable to real-time in
vivo 3D microscopy. We provide analysis of the optical design, of the network
architecture and of our training procedure to optimally reconstruct volumes for
a given target depth range. To train our network, we built a data set of 362
light field images of mouse brain blood vessels and the corresponding aligned
set of 3D confocal scans, which we use as ground truth. The data set will be
made available for research purposes.
- Abstract(参考訳): 単一光場画像から共焦点顕微鏡スタックを再構成するための新しい深層学習手法を提案する。
この再構築のために,U-Net設計に触発された新しいニューラルネットワークアーキテクチャである LFMNet を導入する。
a 112x112x57.6$\mu m^3$ volume (1287x1287x64 voxels) を50msで再現でき、1287x1287ピクセルの単一ライトフィールド画像が与えられた。
生活科学の応用性を証明するため, 蛍光標識血管を用いたマウス脳スライスを定量的, 質的に評価した。
スキャン時間と記憶空間の大幅な減少のため,我々の装置と方法はリアルタイム3D顕微鏡に直接適用できる。
我々は,ネットワークアーキテクチャの光学設計,および与えられた目標深度範囲のボリュームを最適に再構成するためのトレーニング手順の分析を行う。
ネットワークをトレーニングするために、マウスの脳血管の362個のライトフィールド画像と、それに対応する3d共焦点スキャンのデータセットを構築しました。
データセットは研究目的で利用可能になる予定だ。
関連論文リスト
- Computational 3D topographic microscopy from terabytes of data per
sample [2.4657541547959387]
我々は6ギガピクセルのプロファイログラフィー3Dイメージングをミクロンスケールの解像度で行うことができる大規模3Dトポグラフィー顕微鏡を提案する。
我々は、オールインフォーカス光度合成と3次元高さマップを共同で推定する3次元再構成と縫合のための自己教師型ニューラルネットワークベースのアルゴリズムを開発した。
計算顕微鏡の汎用性を実証するため,STARCAMを様々なデシメータスケールの物体に適用した。
論文 参考訳(メタデータ) (2023-06-05T07:09:21Z) - An unsupervised deep learning algorithm for single-site reconstruction
in quantum gas microscopes [47.187609203210705]
量子ガス顕微鏡実験では、物理観測物の正確な抽出には、高忠実度でサイト分解格子の占有を再構築することが不可欠である。
本稿では,深部畳み込みニューラルネットワークに基づく新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-22T18:57:27Z) - Learning Neural Light Fields with Ray-Space Embedding Networks [51.88457861982689]
我々は、コンパクトで、光線に沿った統合放射率を直接予測する新しいニューラル光場表現を提案する。
提案手法は,Stanford Light Field データセットのような,高密度の前方向きデータセットの最先端品質を実現する。
論文 参考訳(メタデータ) (2021-12-02T18:59:51Z) - Light-field microscopy with correlated beams for extended volumetric
imaging at the diffraction limit [0.0]
光強度相関に基づく光電場顕微鏡アーキテクチャを実験的に提案する。
本研究では,3次元試験対象と生体試料を集束面から再抽出する手法の有効性を実証する。
論文 参考訳(メタデータ) (2021-10-02T13:54:11Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Programmable 3D snapshot microscopy with Fourier convolutional networks [3.2156268397508314]
3Dスナップショット顕微鏡は、単一の2Dカメラ画像で3Dボリュームをキャプチャすることにより、カメラと同じくらい高速なボリュームイメージングを可能にします。
3Dスナップショット画像にエンコードされたグローバル混合情報を効率的に統合できるグローバルカーネルフーリエ畳み込みニューラルネットワークのクラスを紹介します。
論文 参考訳(メタデータ) (2021-04-21T16:09:56Z) - Model-inspired Deep Learning for Light-Field Microscopy with Application
to Neuron Localization [27.247818386065894]
光フィールド顕微鏡画像を用いた高速かつ堅牢なソースの3Dローカリゼーションを実現するモデルに基づくディープラーニング手法を提案する。
これは畳み込みスパース符号化問題を効率的に解くディープネットワークを開発することによって実現される。
光場からのほ乳類ニューロンの局在化実験により,提案手法が性能,解釈性,効率の向上をもたらすことが示された。
論文 参考訳(メタデータ) (2021-03-10T16:24:47Z) - Recurrent neural network-based volumetric fluorescence microscopy [0.30586855806896046]
本稿では,標準広視野蛍光顕微鏡でわずかに捉えた2次元画像を用いた深層学習に基づく画像推測フレームワークについて報告する。
再帰的畳み込みニューラルネットワーク(Recurrent-MZ)により、サンプル内のいくつかの軸方向平面からの2次元蛍光情報を明示的に組み込んでサンプル体積をデジタル的に再構成する。
リカレントMZは63xNA対物レンズの被写界深度を約50倍にし、同じサンプル体積を撮像するのに必要となる軸走査数を30倍に削減することを示した。
論文 参考訳(メタデータ) (2020-10-21T06:17:38Z) - 4D Spatio-Temporal Convolutional Networks for Object Position Estimation
in OCT Volumes [69.62333053044712]
3次元畳み込みニューラルネットワーク(CNN)は、単一のOCT画像を用いたマーカーオブジェクトのポーズ推定に有望な性能を示した。
我々は3次元CNNを4次元時間CNNに拡張し、マーカーオブジェクト追跡のための追加の時間情報の影響を評価する。
論文 参考訳(メタデータ) (2020-07-02T12:02:20Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
本稿では,任意の物体の高品質な形状と複雑な空間変化を持つBRDFを再構成する学習に基づく新しい手法を提案する。
まず、深層多視点ステレオネットワークを用いて、ビューごとの深度マップを推定する。
これらの深度マップは、異なるビューを粗く整列するために使用される。
本稿では,新しい多視点反射率推定ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-03-27T21:28:54Z) - Multi-View Photometric Stereo: A Robust Solution and Benchmark Dataset
for Spatially Varying Isotropic Materials [65.95928593628128]
多視点光度ステレオ技術を用いて3次元形状と空間的に異なる反射率の両方をキャプチャする手法を提案する。
我々のアルゴリズムは、遠近点光源と遠近点光源に適している。
論文 参考訳(メタデータ) (2020-01-18T12:26:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。