論文の概要: Model-inspired Deep Learning for Light-Field Microscopy with Application
to Neuron Localization
- arxiv url: http://arxiv.org/abs/2103.06164v1
- Date: Wed, 10 Mar 2021 16:24:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-12 10:22:27.737549
- Title: Model-inspired Deep Learning for Light-Field Microscopy with Application
to Neuron Localization
- Title(参考訳): モデル化深層学習による光フィールド顕微鏡の神経局在化への応用
- Authors: Pingfan Song, Herman Verinaz Jadan, Carmel L. Howe, Peter Quicke,
Amanda J. Foust, Pier Luigi Dragotti
- Abstract要約: 光フィールド顕微鏡画像を用いた高速かつ堅牢なソースの3Dローカリゼーションを実現するモデルに基づくディープラーニング手法を提案する。
これは畳み込みスパース符号化問題を効率的に解くディープネットワークを開発することによって実現される。
光場からのほ乳類ニューロンの局在化実験により,提案手法が性能,解釈性,効率の向上をもたらすことが示された。
- 参考スコア(独自算出の注目度): 27.247818386065894
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Light-field microscopes are able to capture spatial and angular information
of incident light rays. This allows reconstructing 3D locations of neurons from
a single snap-shot.In this work, we propose a model-inspired deep learning
approach to perform fast and robust 3D localization of sources using
light-field microscopy images. This is achieved by developing a deep network
that efficiently solves a convolutional sparse coding (CSC) problem to map
Epipolar Plane Images (EPI) to corresponding sparse codes. The network
architecture is designed systematically by unrolling the convolutional
Iterative Shrinkage and Thresholding Algorithm (ISTA) while the network
parameters are learned from a training dataset. Such principled design enables
the deep network to leverage both domain knowledge implied in the model, as
well as new parameters learned from the data, thereby combining advantages of
model-based and learning-based methods. Practical experiments on localization
of mammalian neurons from light-fields show that the proposed approach
simultaneously provides enhanced performance, interpretability and efficiency.
- Abstract(参考訳): 光電場顕微鏡は入射光線の空間的および角度的情報を捉えることができる。
そこで本研究では,光フィールド顕微鏡画像を用いた高速かつ堅牢なソースの3Dローカリゼーションを実現するモデルに基づく深層学習手法を提案する。
これは、エピポーラ平面画像(EPI)を対応するスパース符号にマッピングするために、畳み込みスパース符号化(CSC)問題を効率的に解くディープネットワークを開発することで達成される。
ネットワークアーキテクチャはConvolutional Iterative Shrinkage and Thresholding Algorithm (ISTA)を解き放ち、ネットワークパラメータはトレーニングデータセットから学習することによって体系的に設計されている。
このような原則化された設計により、ディープネットワークはモデルに含まれるドメイン知識とデータから得られる新しいパラメータの両方を活用でき、モデルベースと学習ベースの方法の利点を組み合わせることができます。
光場からの哺乳類ニューロンの局在に関する実用的な実験は、提案されたアプローチが同時に性能、解釈可能性および効率を高めることを示した。
関連論文リスト
- Convergence Analysis for Deep Sparse Coding via Convolutional Neural Networks [7.956678963695681]
本稿では,Deep Sparse Coding(DSC)モデルについて紹介する。
スパース特徴を抽出する能力において,CNNの収束率を導出する。
スパースコーディングとCNNの強いつながりにインスパイアされた私たちは、ニューラルネットワークがよりスパースな機能を学ぶように促すトレーニング戦略を探求する。
論文 参考訳(メタデータ) (2024-08-10T12:43:55Z) - IPoD: Implicit Field Learning with Point Diffusion for Generalizable 3D Object Reconstruction from Single RGB-D Images [50.4538089115248]
シングルビューRGB-D画像からの3Dオブジェクトの汎用化は依然として難しい課題である。
本稿では,暗黙の場学習と点拡散を調和させる新しい手法IPoDを提案する。
CO3D-v2データセットによる実験では、IPoDの優位性が確認され、Fスコアは7.8%、チャンファー距離は28.6%向上した。
論文 参考訳(メタデータ) (2024-03-30T07:17:37Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
本稿では,スパースビューCBCT再構成のための新規かつ高速な自己教師型ソリューションを提案する。
所望の減衰係数は、3次元空間座標の連続関数として表現され、完全に接続されたディープニューラルネットワークによってパラメータ化される。
ハッシュ符号化を含む学習ベースのエンコーダが採用され、ネットワークが高周波の詳細をキャプチャするのに役立つ。
論文 参考訳(メタデータ) (2022-09-29T04:06:00Z) - Untrained, physics-informed neural networks for structured illumination
microscopy [0.456877715768796]
我々は、深層ニューラルネットワークと構造化照明プロセスの前方モデルを組み合わせることで、トレーニングデータなしでサブ回折像を再構成できることを示す。
結果として生じる物理インフォームドニューラルネットワーク(PINN)は、単一の回折制限されたサブイメージセットに最適化することができる。
論文 参考訳(メタデータ) (2022-07-15T19:02:07Z) - 3D Convolutional with Attention for Action Recognition [6.238518976312625]
現在の行動認識法は、計算コストの高いモデルを用いて行動の時間的依存を学習する。
本稿では,3次元畳み込み層,完全連結層,注目層からなる依存関係を学習するためのディープニューラルネットワークアーキテクチャを提案する。
提案手法はまず3D-CNNを用いて行動の空間的特徴と時間的特徴を学習し,その後,注意時間機構によってモデルが本質的な特徴に注意を向けることを支援する。
論文 参考訳(メタデータ) (2022-06-05T15:12:57Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Localized Persistent Homologies for more Effective Deep Learning [60.78456721890412]
ネットワークトレーニング中の位置を考慮に入れた新しいフィルタ機能を利用する手法を提案する。
この方法で訓練されたネットワークが抽出した曲線構造のトポロジを回復するのに役立つ道路の2次元画像と神経過程の3次元画像スタックを実験的に実証した。
論文 参考訳(メタデータ) (2021-10-12T19:28:39Z) - Compressive spectral image classification using 3D coded convolutional
neural network [12.67293744927537]
本稿では、符号化開口スナップショット分光画像(CASSI)の測定に基づく新しい深層学習HIC手法を提案する。
3次元符号化畳み込みニューラルネットワーク(3D-CCNN)と呼ばれる新しいタイプのディープラーニング戦略を提案し,その分類問題を効率的に解く。
ディープラーニングネットワークと符号化開口部の相乗効果を利用して、分類精度を効果的に向上する。
論文 参考訳(メタデータ) (2020-09-23T15:05:57Z) - LodoNet: A Deep Neural Network with 2D Keypoint Matchingfor 3D LiDAR
Odometry Estimation [22.664095688406412]
本稿では,LiDARフレームを画像空間に転送し,画像特徴抽出として問題を再構成することを提案する。
特徴抽出のためのスケール不変特徴変換(SIFT)の助けを借りて、マッチングキーポイントペア(MKP)を生成することができる。
畳み込みニューラルネットワークパイプラインは、抽出したMKPによるLiDARのオドメトリー推定のために設計されている。
提案手法,すなわちLodoNet は,KITTI odometry 推定ベンチマークで評価され,最先端の手法と同等あるいはそれ以上の結果が得られた。
論文 参考訳(メタデータ) (2020-09-01T01:09:41Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
ハイパースペクトル画像超解像のための新しいスペクトル空間残差ネットワーク(SSRNet)を提案する。
提案手法は,2次元畳み込みではなく3次元畳み込みを用いて空間スペクトル情報の探索を効果的に行うことができる。
各ユニットでは空間的・時間的分離可能な3次元畳み込みを用いて空間的・スペクトル的な情報を抽出する。
論文 参考訳(メタデータ) (2020-01-14T03:34:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。