Topologically induced spectral behavior: the example of quantum graphs
- URL: http://arxiv.org/abs/2003.06189v1
- Date: Fri, 13 Mar 2020 10:26:25 GMT
- Title: Topologically induced spectral behavior: the example of quantum graphs
- Authors: Pavel Exner
- Abstract summary: We show that a nontrivial topology of the configuration space can give rise to a rich variety of spectral types.
We also address the question about the number of open spectral gaps and show that it could be nonzero and finite.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This review paper summarizes the contents of the talk given by the author at
the 8th International Congress of Chinese Mathematicians. Using examples of
Schr\"odinger operators on metric graphs, it is shown that a nontrivial
topology of the configuration space can give rise to a rich variety of spectral
types. In particular, it is shown that the spectrum may be of a pure point type
or to have a Cantor structure. We also address the question about the number of
open spectral gaps and show that it could be nonzero and finite. Finally,
inspired by a recent attempt to model the anomalous Hall effect we analyze a
vertex coupling which exhibits high-energy behavior determined by the vertex
degree parity.
Related papers
- Quantum geometry embedded in unitarity of evolution: revealing its impacts as quantum oscillation and dephasing in spin resonance and crystal bands [0.29127054707887967]
We show how geometry emerges in quantum as an intrinsic consequence of unitary evolution.
We exemplify geometric observables, such as oscillation, dephasing, in spin and band scenarios.
arXiv Detail & Related papers (2024-06-22T13:16:51Z) - Graph Generation via Spectral Diffusion [51.60814773299899]
We present GRASP, a novel graph generative model based on 1) the spectral decomposition of the graph Laplacian matrix and 2) a diffusion process.
Specifically, we propose to use a denoising model to sample eigenvectors and eigenvalues from which we can reconstruct the graph Laplacian and adjacency matrix.
Our permutation invariant model can also handle node features by concatenating them to the eigenvectors of each node.
arXiv Detail & Related papers (2024-02-29T09:26:46Z) - Graph Morphology of Non-Hermitian Bands [0.0]
Non-Hermitian systems exhibit diverse graph patterns of energy spectra under open boundary conditions.
Our work lays the cornerstone for exploring the versatile spectral geometry and graph topology of non-Hermitian non-Bloch bands.
arXiv Detail & Related papers (2023-11-25T03:53:20Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
Convolutional neural networks have been widely applied to hyperspectral image classification.
Recent methods attempt to address this issue by performing graph convolutions on spatial topologies.
arXiv Detail & Related papers (2021-06-26T06:24:51Z) - Spectral properties of relativistic quantum waveguides [0.0]
We find an effective Hamiltonian on the base curve which approximates the original operator in the thin-strip limit.
We also investigate the existence of bound states in the non-relativistic limit and give a geometric condition for the bound states to exist.
arXiv Detail & Related papers (2021-01-11T16:33:52Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Isospectral twirling and quantum chaos [0.0]
We show that the most important measures of quantum chaos like frame potentials, scrambling, Loschmidt echo, and out-of-time correlators (OTOCs) can be described by the unified framework of the isospectral twirling.
We show that, by exploiting random matrix theory, these measures of quantum chaos clearly distinguish the finite time profiles of probes to quantum chaos.
arXiv Detail & Related papers (2020-11-11T19:01:08Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - Spectra of Perfect State Transfer Hamiltonians on Fractal-Like Graphs [62.997667081978825]
We study the spectral features, on fractal-like graphs, of Hamiltonians which exhibit the special property of perfect quantum state transfer.
The essential goal is to develop the theoretical framework for understanding the interplay between perfect quantum state transfer, spectral properties, and the geometry of the underlying graph.
arXiv Detail & Related papers (2020-03-25T02:46:14Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.