論文の概要: Generalized Canonical Correlation Analysis: A Subspace Intersection
Approach
- arxiv url: http://arxiv.org/abs/2003.11205v1
- Date: Wed, 25 Mar 2020 04:04:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-20 03:05:40.064842
- Title: Generalized Canonical Correlation Analysis: A Subspace Intersection
Approach
- Title(参考訳): 一般化正準相関解析:部分空間断面積法
- Authors: Mikael S{\o}rensen, Charilaos I. Kanatsoulis, and Nicholas D.
Sidiropoulos
- Abstract要約: Generalized Canonical correlation Analysis (GCCA)は、データマイニング、機械学習、人工知能に多くの応用を見出す重要なツールである。
本稿では,GCCAの本質を自然に捉えた(双線形)生成モデルに基づく,GCCAの新たな代数的視点を提供する。
大規模GCCAタスクを処理するためにスケールアップする部分空間交叉に基づく新しいGCCAアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 30.475159163815505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalized Canonical Correlation Analysis (GCCA) is an important tool that
finds numerous applications in data mining, machine learning, and artificial
intelligence. It aims at finding `common' random variables that are strongly
correlated across multiple feature representations (views) of the same set of
entities. CCA and to a lesser extent GCCA have been studied from the
statistical and algorithmic points of view, but not as much from the standpoint
of linear algebra. This paper offers a fresh algebraic perspective of GCCA
based on a (bi-)linear generative model that naturally captures its essence. It
is shown that from a linear algebra point of view, GCCA is tantamount to
subspace intersection; and conditions under which the common subspace of the
different views is identifiable are provided. A novel GCCA algorithm is
proposed based on subspace intersection, which scales up to handle large GCCA
tasks. Synthetic as well as real data experiments are provided to showcase the
effectiveness of the proposed approach.
- Abstract(参考訳): Generalized Canonical correlation Analysis (GCCA)は、データマイニング、機械学習、人工知能に多くの応用を見出す重要なツールである。
同じエンティティの集合の複数の特徴表現(ビュー)に強く相関する'共通'ランダム変数を見つけることを目的としている。
CCAとより少ない範囲のGCAは、統計学的およびアルゴリズム的な観点から研究されているが、線型代数の観点からはあまり研究されていない。
本稿では,その本質を自然に捉えた(双)線形生成モデルに基づくGCCAの新しい代数的視点を提供する。
線型代数的な観点から、GCCAは部分空間交叉に接しており、異なるビューの共通部分空間が特定可能な条件が提供される。
大規模GCCAタスクを処理するためにスケールアップする部分空間交叉に基づく新しいGCCAアルゴリズムを提案する。
提案手法の有効性を示すために合成と実データ実験が提供されている。
関連論文リスト
- GACL: Exemplar-Free Generalized Analytic Continual Learning [20.49481895737308]
クラスインクリメンタルラーニング(CIL)は、各タスクにカテゴリを分けた逐次的なタスクでネットワークをトレーニングするが、破滅的な忘れに苦しむ。
一般化されたCIL(GCIL)は、より現実的なシナリオにおいてCILの問題に対処することを目的としている。
汎用解析連続学習(GACL)という,先進的なGCIL手法を提案する。
論文 参考訳(メタデータ) (2024-03-23T03:56:31Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
線形複雑度に近い高速マルチビュークラスタリングのための適応重み付き積分空間(AIMC)を提案する。
特に、ビュー生成モデルは、潜在積分空間からのビュー観測を再構成するために設計されている。
いくつかの実世界のデータセットで実施された実験は、提案したAIMC法の優位性を確認した。
論文 参考訳(メタデータ) (2022-08-25T05:47:39Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
本稿では,幾何学コントラスト学習(Geometry Contrastive Learning, GCL)と呼ばれる,新しい自己指導型学習手法を提案する。
GCLはユークリッドと双曲的な視点からヘテロジニアスグラフを同時に見ることができ、リッチな意味論と複雑な構造をモデル化する能力の強い融合を目指している。
4つのベンチマークデータセットの大規模な実験は、提案手法が強いベースラインよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-25T03:54:53Z) - Variational Interpretable Learning from Multi-view Data [2.687817337319978]
DICCAは、多視点データの共有とビュー固有のバリエーションの両方を分離するように設計されている。
実世界のデータセットにおける実証的な結果は、我々の手法がドメイン間で競合していることを示している。
論文 参考訳(メタデータ) (2022-02-28T01:56:44Z) - Communication-Efficient Federated Linear and Deep Generalized Canonical
Correlation Analysis [13.04301271535511]
本研究は, 線形GCCAと深層GCCAの双方を対象とした, コミュニケーション効率のよいフェデレーション学習フレームワークを提案する。
実験により,提案アルゴリズムは精度と収束速度をほぼ損なうことなく,通信オーバーヘッドを大幅に低減できることを示した。
論文 参考訳(メタデータ) (2021-09-25T16:43:10Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
本稿では、HSIデータクラスタリングのための空間スペクトルクラスタリングとアンカーグラフ(SSCAG)という新しい非監視アプローチを提案する。
提案されたSSCAGは最先端のアプローチと競合する。
論文 参考訳(メタデータ) (2021-04-24T08:09:27Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - Generalized Matrix Factorization: efficient algorithms for fitting
generalized linear latent variable models to large data arrays [62.997667081978825]
一般化線形潜在変数モデル(GLLVM)は、そのような因子モデルを非ガウス応答に一般化する。
GLLVMのモデルパラメータを推定する現在のアルゴリズムは、集約的な計算を必要とし、大規模なデータセットにスケールしない。
本稿では,GLLVMを高次元データセットに適用するための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-10-06T04:28:19Z) - Sparse Generalized Canonical Correlation Analysis: Distributed
Alternating Iteration based Approach [18.93565942407577]
Sparse Canonical correlation analysis (CCA) はスパース構造を用いた潜伏情報検出に有用な統計ツールである。
本稿では,多視点データとスパース構造との潜在関係を検出可能な一般標準相関解析(GCCA)を提案する。
論文 参考訳(メタデータ) (2020-04-23T05:53:48Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
グラフ自動エンコーダ(GAE)モデルは、半教師付きグラフ畳み込みネットワーク(GCN)に基づく
我々は、グラフクラスタリングのための特定のGAEベースのモデルを設計し、その理論、すなわち、埋め込みグラフオートエンコーダ(EGAE)と整合する。
EGAEは1つのエンコーダと2つのデコーダで構成される。
論文 参考訳(メタデータ) (2020-02-20T09:53:28Z) - D-GCCA: Decomposition-based Generalized Canonical Correlation Analysis
for Multi-view High-dimensional Data [11.184915338554422]
高次元多視点データ分析における一般的なモデルは、各ビューのデータ行列を、すべてのデータビューに共通する潜在因子によって生成される低ランクの共通ソース行列に分解する。
本稿では,分解に基づく一般化正準相関解析(D-GCCA)と呼ばれる新しい分解法を提案する。
我々のD-GCCAは、共通成分と特異成分を正準変数から分離することにより、一般化された正準相関解析よりも一歩前進する。
論文 参考訳(メタデータ) (2020-01-09T06:35:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。