ACNMP: Skill Transfer and Task Extrapolation through Learning from
Demonstration and Reinforcement Learning via Representation Sharing
- URL: http://arxiv.org/abs/2003.11334v3
- Date: Mon, 9 Nov 2020 09:39:59 GMT
- Title: ACNMP: Skill Transfer and Task Extrapolation through Learning from
Demonstration and Reinforcement Learning via Representation Sharing
- Authors: M.Tuluhan Akbulut, Erhan Oztop, M.Yunus Seker, Honghu Xue, Ahmet E.
Tekden and Emre Ugur
- Abstract summary: ACNMPs can be used to implement skill transfer between robots having different morphology.
We show the real-world suitability of ACNMPs through real robot experiments.
- Score: 5.06461227260756
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To equip robots with dexterous skills, an effective approach is to first
transfer the desired skill via Learning from Demonstration (LfD), then let the
robot improve it by self-exploration via Reinforcement Learning (RL). In this
paper, we propose a novel LfD+RL framework, namely Adaptive Conditional Neural
Movement Primitives (ACNMP), that allows efficient policy improvement in novel
environments and effective skill transfer between different agents. This is
achieved through exploiting the latent representation learned by the underlying
Conditional Neural Process (CNP) model, and simultaneous training of the model
with supervised learning (SL) for acquiring the demonstrated trajectories and
via RL for new trajectory discovery. Through simulation experiments, we show
that (i) ACNMP enables the system to extrapolate to situations where pure LfD
fails; (ii) Simultaneous training of the system through SL and RL preserves the
shape of demonstrations while adapting to novel situations due to the shared
representations used by both learners; (iii) ACNMP enables order-of-magnitude
sample-efficient RL in extrapolation of reaching tasks compared to the existing
approaches; (iv) ACNMPs can be used to implement skill transfer between robots
having different morphology, with competitive learning speeds and importantly
with less number of assumptions compared to the state-of-the-art approaches.
Finally, we show the real-world suitability of ACNMPs through real robot
experiments that involve obstacle avoidance, pick and place and pouring
actions.
Related papers
- Latent-Predictive Empowerment: Measuring Empowerment without a Simulator [56.53777237504011]
We present Latent-Predictive Empowerment (LPE), an algorithm that can compute empowerment in a more practical manner.
LPE learns large skillsets by maximizing an objective that is a principled replacement for the mutual information between skills and states.
arXiv Detail & Related papers (2024-10-15T00:41:18Z) - SHIRE: Enhancing Sample Efficiency using Human Intuition in REinforcement Learning [11.304750795377657]
We propose SHIRE, a framework for encoding human intuition using Probabilistic Graphical Models (PGMs)
SHIRE achieves 25-78% sample efficiency gains across the environments we evaluate at negligible overhead cost.
arXiv Detail & Related papers (2024-09-16T04:46:22Z) - Conditional Neural Expert Processes for Learning Movement Primitives from Demonstration [1.9336815376402723]
Conditional Neural Expert Processes (CNEP) learns to assign demonstrations from different modes to distinct expert networks.
CNEP does not require supervision on which mode the trajectories belong to.
Our system is capable of on-the-fly adaptation to environmental changes via an online conditioning mechanism.
arXiv Detail & Related papers (2024-02-13T12:52:02Z) - Exploiting Symmetry and Heuristic Demonstrations in Off-policy
Reinforcement Learning for Robotic Manipulation [1.7901837062462316]
This paper aims to define and incorporate the natural symmetry present in physical robotic environments.
The proposed method is validated via two point-to-point reaching tasks of an industrial arm, with and without an obstacle.
A comparison study between the proposed method and a traditional off-policy reinforcement learning algorithm indicates its advantage in learning performance and potential value for applications.
arXiv Detail & Related papers (2023-04-12T11:38:01Z) - CoopInit: Initializing Generative Adversarial Networks via Cooperative
Learning [50.90384817689249]
CoopInit is a cooperative learning-based strategy that can quickly learn a good starting point for GANs.
We demonstrate the effectiveness of the proposed approach on image generation and one-sided unpaired image-to-image translation tasks.
arXiv Detail & Related papers (2023-03-21T07:49:32Z) - Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning [92.18524491615548]
Contrastive self-supervised learning has been successfully integrated into the practice of (deep) reinforcement learning (RL)
We study how RL can be empowered by contrastive learning in a class of Markov decision processes (MDPs) and Markov games (MGs) with low-rank transitions.
Under the online setting, we propose novel upper confidence bound (UCB)-type algorithms that incorporate such a contrastive loss with online RL algorithms for MDPs or MGs.
arXiv Detail & Related papers (2022-07-29T17:29:08Z) - Training and Evaluation of Deep Policies using Reinforcement Learning
and Generative Models [67.78935378952146]
GenRL is a framework for solving sequential decision-making problems.
It exploits the combination of reinforcement learning and latent variable generative models.
We experimentally determine the characteristics of generative models that have most influence on the performance of the final policy training.
arXiv Detail & Related papers (2022-04-18T22:02:32Z) - ReIL: A Framework for Reinforced Intervention-based Imitation Learning [3.0846824529023387]
We introduce Reinforced Intervention-based Learning (ReIL), a framework consisting of a general intervention-based learning algorithm and a multi-task imitation learning model.
Experimental results from real world mobile robot navigation challenges indicate that ReIL learns rapidly from sparse supervisor corrections without suffering deterioration in performance.
arXiv Detail & Related papers (2022-03-29T09:30:26Z) - Demonstration-Efficient Guided Policy Search via Imitation of Robust
Tube MPC [36.3065978427856]
We propose a strategy to compress a computationally expensive Model Predictive Controller (MPC) into a more computationally efficient representation based on a deep neural network and Imitation Learning (IL)
By generating a Robust Tube variant (RTMPC) of the MPC and leveraging properties from the tube, we introduce a data augmentation method that enables high demonstration-efficiency.
Our method outperforms strategies commonly employed in IL, such as DAgger and Domain Randomization, in terms of demonstration-efficiency and robustness to perturbations unseen during training.
arXiv Detail & Related papers (2021-09-21T01:50:19Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - RL-CycleGAN: Reinforcement Learning Aware Simulation-To-Real [74.45688231140689]
We introduce the RL-scene consistency loss for image translation, which ensures that the translation operation is invariant with respect to the Q-values associated with the image.
We obtain RL-CycleGAN, a new approach for simulation-to-real-world transfer for reinforcement learning.
arXiv Detail & Related papers (2020-06-16T08:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.