Reward Machine Inference for Robotic Manipulation
- URL: http://arxiv.org/abs/2412.10096v1
- Date: Fri, 13 Dec 2024 12:32:53 GMT
- Title: Reward Machine Inference for Robotic Manipulation
- Authors: Mattijs Baert, Sam Leroux, Pieter Simoens,
- Abstract summary: Reward Machines (RMs) enhance RL's capability to train policies over extended time horizons.
We introduce a novel LfD approach for learning RMs directly from visual demonstrations of robotic manipulation tasks.
We validate our method on vision-based manipulation tasks, showing that the inferred RM accurately captures task structure and enables an RL agent to effectively learn an optimal policy.
- Score: 1.6135226672466307
- License:
- Abstract: Learning from Demonstrations (LfD) and Reinforcement Learning (RL) have enabled robot agents to accomplish complex tasks. Reward Machines (RMs) enhance RL's capability to train policies over extended time horizons by structuring high-level task information. In this work, we introduce a novel LfD approach for learning RMs directly from visual demonstrations of robotic manipulation tasks. Unlike previous methods, our approach requires no predefined propositions or prior knowledge of the underlying sparse reward signals. Instead, it jointly learns the RM structure and identifies key high-level events that drive transitions between RM states. We validate our method on vision-based manipulation tasks, showing that the inferred RM accurately captures task structure and enables an RL agent to effectively learn an optimal policy.
Related papers
- Dynamic Non-Prehensile Object Transport via Model-Predictive Reinforcement Learning [24.079032278280447]
We propose an approach that combines batch reinforcement learning (RL) with model-predictive control (MPC)
We validate the proposed approach through extensive simulated and real-world experiments on a Franka Panda robot performing the robot waiter task.
arXiv Detail & Related papers (2024-11-27T03:33:42Z) - Guided Reinforcement Learning for Robust Multi-Contact Loco-Manipulation [12.377289165111028]
Reinforcement learning (RL) often necessitates a meticulous Markov Decision Process (MDP) design tailored to each task.
This work proposes a systematic approach to behavior synthesis and control for multi-contact loco-manipulation tasks.
We define a task-independent MDP to train RL policies using only a single demonstration per task generated from a model-based trajectory.
arXiv Detail & Related papers (2024-10-17T17:46:27Z) - RILe: Reinforced Imitation Learning [60.63173816209543]
RILe is a framework that combines the strengths of imitation learning and inverse reinforcement learning to learn a dense reward function efficiently.
Our framework produces high-performing policies in high-dimensional tasks where direct imitation fails to replicate complex behaviors.
arXiv Detail & Related papers (2024-06-12T17:56:31Z) - Logical Specifications-guided Dynamic Task Sampling for Reinforcement Learning Agents [9.529492371336286]
Reinforcement Learning (RL) has made significant strides in enabling artificial agents to learn diverse behaviors.
We propose a novel approach, called Logical Specifications-guided Dynamic Task Sampling (LSTS)
LSTS learns a set of RL policies to guide an agent from an initial state to a goal state based on a high-level task specification.
arXiv Detail & Related papers (2024-02-06T04:00:21Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - Mastering Robot Manipulation with Multimodal Prompts through Pretraining and Multi-task Fine-tuning [49.92517970237088]
We tackle the problem of training a robot to understand multimodal prompts.
This type of task poses a major challenge to robots' capability to understand the interconnection and complementarity between vision and language signals.
We introduce an effective framework that learns a policy to perform robot manipulation with multimodal prompts.
arXiv Detail & Related papers (2023-10-14T22:24:58Z) - Hierarchies of Reward Machines [75.55324974788475]
Reward machines (RMs) are a recent formalism for representing the reward function of a reinforcement learning task through a finite-state machine.
We propose a formalism for further abstracting the subtask structure by endowing an RM with the ability to call other RMs.
arXiv Detail & Related papers (2022-05-31T12:39:24Z) - Lifelong Reinforcement Learning with Temporal Logic Formulas and Reward
Machines [30.161550541362487]
We propose Lifelong reinforcement learning with Sequential linear temporal logic formulas and Reward Machines (LSRM)
We first introduce Sequential Linear Temporal Logic (SLTL), which is a supplement to the existing Linear Temporal Logic formal language.
We then utilize Reward Machines (RM) to exploit structural reward functions for tasks encoded with high-level events.
arXiv Detail & Related papers (2021-11-18T02:02:08Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
Reinforcement learning can be used to build general-purpose robotic systems.
However, training RL agents to solve robotics tasks still remains challenging.
In this work, we manually specify a library of robot action primitives (RAPS), parameterized with arguments that are learned by an RL policy.
We find that our simple change to the action interface substantially improves both the learning efficiency and task performance.
arXiv Detail & Related papers (2021-10-28T17:59:30Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z) - ACNMP: Skill Transfer and Task Extrapolation through Learning from
Demonstration and Reinforcement Learning via Representation Sharing [5.06461227260756]
ACNMPs can be used to implement skill transfer between robots having different morphology.
We show the real-world suitability of ACNMPs through real robot experiments.
arXiv Detail & Related papers (2020-03-25T11:28:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.