論文の概要: PiP: Planning-informed Trajectory Prediction for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2003.11476v2
- Date: Mon, 18 Jan 2021 06:14:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-20 03:50:16.271599
- Title: PiP: Planning-informed Trajectory Prediction for Autonomous Driving
- Title(参考訳): PiP:自律運転のための計画インフォームド軌道予測
- Authors: Haoran Song, Wenchao Ding, Yuxuan Chen, Shaojie Shen, Michael Yu Wang,
Qifeng Chen
- Abstract要約: マルチエージェント設定における予測問題に対処するために,計画インフォームド・トラジェクトリ予測(PiP)を提案する。
本手法は,エゴカーの計画により予測過程を通知することにより,高速道路のデータセット上でのマルチエージェント予測の最先端性能を実現する。
- 参考スコア(独自算出の注目度): 69.41885900996589
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is critical to predict the motion of surrounding vehicles for self-driving
planning, especially in a socially compliant and flexible way. However, future
prediction is challenging due to the interaction and uncertainty in driving
behaviors. We propose planning-informed trajectory prediction (PiP) to tackle
the prediction problem in the multi-agent setting. Our approach is
differentiated from the traditional manner of prediction, which is only based
on historical information and decoupled with planning. By informing the
prediction process with the planning of ego vehicle, our method achieves the
state-of-the-art performance of multi-agent forecasting on highway datasets.
Moreover, our approach enables a novel pipeline which couples the prediction
and planning, by conditioning PiP on multiple candidate trajectories of the ego
vehicle, which is highly beneficial for autonomous driving in interactive
scenarios.
- Abstract(参考訳): 特に社会的に準拠した柔軟な方法で、自動運転計画のための周辺車両の動きを予測することは重要である。
しかし、運転行動の相互作用と不確実性のため、将来の予測は困難である。
マルチエージェント環境での予測問題に対処するために,計画インフォームド軌道予測(PiP)を提案する。
我々のアプローチは、歴史的情報のみに基づいて計画と切り離された従来の予測方法と区別される。
本手法は,ego車両の計画と共に予測プロセスを通知することにより,高速道路データセットにおけるマルチエージェント予測の最先端性能を実現する。
さらに,インタラクティブなシナリオにおいて,自律走行に非常に有益であるego車両の複数候補軌道にpipを条件付けすることにより,予測と計画を結合する新しいパイプラインを実現する。
関連論文リスト
- PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving [57.89801036693292]
PPAD(Iterative Interaction of Prediction and Planning Autonomous Driving)は、予測と計画のより良い統合を目的とした、タイムステップワイドなインタラクションである。
我々は,階層的動的キーオブジェクトに着目したego-to-agent,ego-to-map,ego-to-BEVインタラクション機構を設計し,インタラクションをモデル化する。
論文 参考訳(メタデータ) (2023-11-14T11:53:24Z) - Interactive Joint Planning for Autonomous Vehicles [19.479300967537675]
対話的な運転シナリオでは、あるエージェントの行動が隣人の行動に大きな影響を及ぼす。
本稿では,MPCを学習予測モデルでブリッジする対話型共同計画(Interactive Joint Planning, IJP)を提案する。
IJPは、共同最適化やサンプリングベースの計画を実行することなく、ベースラインを大幅に上回る。
論文 参考訳(メタデータ) (2023-10-27T17:48:25Z) - ScePT: Scene-consistent, Policy-based Trajectory Predictions for
Planning [32.71073060698739]
軌道予測は、制御されていないエージェントと環境を共有する自律システムにとって重要である。
政策計画に基づく軌道予測モデルであるScePTを提案する。
明示的にシーンの一貫性を強制し、条件付き予測に使用できるエージェントインタラクションポリシーを学ぶ。
論文 参考訳(メタデータ) (2022-06-18T00:00:02Z) - Deep Interactive Motion Prediction and Planning: Playing Games with
Motion Prediction Models [162.21629604674388]
本研究は,新しい対話型マルチエージェントニューラルネットワークポリシを予測モデルの一部として使用するゲーム理論モデル予測制御器(MPC)を提案する。
本手法の成功の基礎は,周辺エージェントの状態と地図情報に基づいて車両を操縦できる,新しいマルチエージェントポリシーネットワークの設計である。
論文 参考訳(メタデータ) (2022-04-05T17:58:18Z) - Self-Supervised Action-Space Prediction for Automated Driving [0.0]
本稿では,自動走行のための新しい学習型マルチモーダル軌道予測アーキテクチャを提案する。
学習問題を加速度と操舵角の空間に投入することにより、運動論的に実現可能な予測を実現する。
提案手法は,都市交差点とラウンドアバウトを含む実世界のデータセットを用いて評価する。
論文 参考訳(メタデータ) (2021-09-21T08:27:56Z) - End-to-End Interactive Prediction and Planning with Optical Flow
Distillation for Autonomous Driving [16.340715765227475]
本稿では,自律運転のためのエンドツーエンド対話型ニューラルモーションプランナ(INMP)を提案する。
INMPはまず鳥の目線空間で特徴マップを生成し、それを処理して他のエージェントを検出し、インタラクティブな予測と計画を共同で実行します。
また, 実時間推定速度を維持しつつ, ネットワーク性能を効果的に向上できる光フロー蒸留パラダイムを採用している。
論文 参考訳(メタデータ) (2021-04-18T14:05:18Z) - Perceive, Predict, and Plan: Safe Motion Planning Through Interpretable
Semantic Representations [81.05412704590707]
本稿では,自動運転車の協調認識,予測,動作計画を行うエンド・ツー・エンドの学習可能なネットワークを提案する。
私たちのネットワークは、人間のデモからエンドツーエンドに学習されます。
論文 参考訳(メタデータ) (2020-08-13T14:40:46Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) は、新しい2段階の動作予測フレームワークである。
TPNetはまず、仮説の提案として将来の軌道の候補セットを生成し、次に提案の分類と修正によって最終的な予測を行う。
4つの大規模軌道予測データセットの実験は、TPNetが定量的かつ定性的に、最先端の結果を達成することを示した。
論文 参考訳(メタデータ) (2020-04-26T00:01:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。