論文の概要: Utilizing Differential Evolution into optimizing targeted cancer
treatments
- arxiv url: http://arxiv.org/abs/2003.11623v1
- Date: Sat, 21 Mar 2020 10:20:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-21 12:40:27.810902
- Title: Utilizing Differential Evolution into optimizing targeted cancer
treatments
- Title(参考訳): がん治療の最適化への差分進化の利用
- Authors: Michail-Antisthenis Tsompanas, Larry Bull, Andrew Adamatzky, Igor
Balaz
- Abstract要約: 微分進化の研究は、実数値問題におけるこの手法の多様性の高効率化によって動機づけられた。
The basic DE algorithm, "DE/rand/1" was used to optimization thesimulated design of a target drug delivery system for tumor treatment on PhysiCell simulator。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Working towards the development of an evolvable cancer treatment simulator,
the investigation of Differential Evolution was considered, motivated by the
high efficiency of variations of this technique in real-valued problems. A
basic DE algorithm, namely "DE/rand/1" was used to optimize the simulated
design of a targeted drug delivery system for tumor treatment on PhysiCell
simulator. The suggested approach proved to be more efficient than a standard
genetic algorithm, which was not able to escape local minima after a predefined
number of generations. The key attribute of DE that enables it to outperform
standard EAs, is the fact that it keeps the diversity of the population high,
throughout all the generations. This work will be incorporated with ongoing
research in a more wide applicability platform that will design, develop and
evaluate targeted drug delivery systems aiming cancer tumours.
- Abstract(参考訳): 進化可能ながん治療シミュレータの開発に向けて, 実数値問題におけるこの手法の多様性の高効率化を動機として, 差分進化の研究が検討された。
de/rand/1 (de/rand/1) という基本的な de アルゴリズムは、物理細胞シミュレータ上で腫瘍治療のための標的薬物デリバリーシステムのシミュレーション設計を最適化するために用いられた。
提案手法は、事前定義された世代数の後、局所的なミニマから逃れることができなかった標準的な遺伝的アルゴリズムよりも効率的であることが判明した。
標準的なEAを上回り、すべての世代にわたって、人口の多様性を高く保っているという事実が、DEの重要な属性である。
この研究は、がん腫瘍をターゲットとした標的薬のデリバリーシステムを設計、開発、評価する、より広い適用可能性プラットフォームで進行中の研究に組み込まれる。
関連論文リスト
- Enhancing Brain Tumor Classification Using TrAdaBoost and Multi-Classifier Deep Learning Approaches [0.0]
脳腫瘍は、急速な成長と転移の可能性のために深刻な健康上の脅威となる。
本研究の目的は,脳腫瘍分類の効率と精度を向上させることである。
我々のアプローチは、ViT(Vision Transformer)、Capsule Neural Network(CapsNet)、ResNet-152やVGG16といった畳み込みニューラルネットワーク(CNN)など、最先端のディープラーニングアルゴリズムを組み合わせる。
論文 参考訳(メタデータ) (2024-10-31T07:28:06Z) - Evolution-aware VAriance (EVA) Coreset Selection for Medical Image Classification [37.57407966808067]
進化対応可変(EVA)と呼ばれる新しいコアセット選択戦略を提案する。
EVAは10%のトレーニングデータで98.27%の精度を達成しているが、完全なトレーニングセットでは97.20%である。
論文 参考訳(メタデータ) (2024-06-09T07:22:50Z) - Biophysics Informed Pathological Regularisation for Brain Tumour Segmentation [10.466349398419846]
本稿では,脳腫瘍進展部分微分方程式(PDE)モデルをディープラーニングを用いた正規化として設計する手法を提案する。
本手法では,特にデータ共有シナリオにおいて,腫瘍増殖PDEモデルをセグメント化プロセスに直接導入し,精度とロバスト性を向上させる。
我々は、BraTS 2023データセットの広範な実験を通じて、我々のフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-14T07:21:46Z) - Tumoral Angiogenic Optimizer: A new bio-inspired based metaheuristic [5.013833066304755]
腫瘍血管新生過程において発生する血管内皮細胞の形態形成細胞運動に着想を得た新しいメタヒューリスティックを提案する。
提案アルゴリズムは, 実世界の問題 (カンチレバービーム設計, 圧力容器設計, テンション/圧縮ばね, 持続的浮揚可能資源) に適用される。
論文 参考訳(メタデータ) (2023-09-12T03:51:53Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
深層学習に基づく脳腫瘍再発位置予測ネットワークを提案する。
まず、パブリックデータセットBraTS 2021上で、マルチモーダル脳腫瘍セグメンテーションネットワークをトレーニングする。
次に、事前訓練されたエンコーダを、リッチなセマンティックな特徴を抽出するために、プライベートデータセットに転送する。
2つのデコーダは、現在の脳腫瘍を共同に分断し、将来の腫瘍再発位置を予測するために構築されている。
論文 参考訳(メタデータ) (2023-04-11T02:45:38Z) - Reinforced Genetic Algorithm for Structure-based Drug Design [38.134929249388406]
SBDD(Structure-based drug design)は、疾患関連タンパク質(ターゲット)に結合する分子を見つけることにより、薬物候補を見つけることを目的とした薬物設計である。
本稿では,ニューラルネットワークを用いた遺伝的アルゴリズム(Reinforced Genetic Algorithm, RGA)を提案する。
論文 参考訳(メタデータ) (2022-11-28T22:59:46Z) - An Improved Deep Convolutional Neural Network by Using Hybrid
Optimization Algorithms to Detect and Classify Brain Tumor Using Augmented
MRI Images [0.9990687944474739]
本稿では,最適化アルゴリズムを改良することにより,深層畳み込み学習の改善を実現する。
提案手法の性能を2073個のMRI画像で検証する実験を行った。
性能比較では、DCNN-G-HHOは既存の手法よりもはるかに成功しており、特にスコアの精度は97%である。
論文 参考訳(メタデータ) (2022-06-08T14:29:06Z) - Improving RNA Secondary Structure Design using Deep Reinforcement
Learning [69.63971634605797]
本稿では,RNA配列設計に強化学習を適用した新しいベンチマークを提案する。このベンチマークでは,目的関数を配列の二次構造における自由エネルギーとして定義する。
本稿では,これらのアルゴリズムに対して行うアブレーション解析の結果と,バッチ間でのアルゴリズムの性能を示すグラフを示す。
論文 参考訳(メタデータ) (2021-11-05T02:54:06Z) - Resource Planning for Hospitals Under Special Consideration of the
COVID-19 Pandemic: Optimization and Sensitivity Analysis [87.31348761201716]
新型コロナウイルス(covid-19)パンデミックのような危機は、医療機関にとって深刻な課題となる。
BaBSim.Hospitalは離散イベントシミュレーションに基づく容量計画ツールである。
BaBSim.Hospitalを改善するためにこれらのパラメータを調査し最適化することを目指しています。
論文 参考訳(メタデータ) (2021-05-16T12:38:35Z) - Evolving Nano Particle Cancer Treatments with Multiple Particle Types [0.0]
本稿では,癌腫瘍を標的としたナノ粒子ベースの薬物デリバリーシステムを設計する際の問題点について検討する。
複数のタイプのNPを利用することは、治療の複雑さが高いため、より効果的であることが期待されている。
この結果から,あらかじめ定義された計算予算の下で,進化的手法を用いて解空間を探索する場合,複数のタイプのNPを利用する方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2020-11-10T08:46:30Z) - GeneCAI: Genetic Evolution for Acquiring Compact AI [36.04715576228068]
ディープニューラルネットワーク(DNN)は、より高い推論精度を達成するために、より複雑なアーキテクチャへと進化している。
モデル圧縮技術は、リソース制限されたモバイルデバイスにそのような計算集約的なアーキテクチャを効率的に展開するために利用することができる。
本稿では,階層ごとの圧縮ハイパーパラメータのチューニング方法を自動的に学習する新しい最適化手法であるGeneCAIを紹介する。
論文 参考訳(メタデータ) (2020-04-08T20:56:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。