Multi-User Remote lab: Timetable Scheduling Using Simplex Nondominated
Sorting Genetic Algorithm
- URL: http://arxiv.org/abs/2003.11708v1
- Date: Thu, 26 Mar 2020 02:31:50 GMT
- Title: Multi-User Remote lab: Timetable Scheduling Using Simplex Nondominated
Sorting Genetic Algorithm
- Authors: Seid Miad Zandavi, Vera Chung, Ali Anaissi
- Abstract summary: The scheduling of multi-user remote laboratories is modeled as a multimodal function for the proposed algorithm.
The proposed algorithm utilizes the Simplex algorithm in terms of exploration, and NSGA for sorting local optimum points.
- Score: 1.0953917735844645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The scheduling of multi-user remote laboratories is modeled as a multimodal
function for the proposed optimization algorithm. The hybrid optimization
algorithm, hybridization of the Nelder-Mead Simplex algorithm and Non-dominated
Sorting Genetic Algorithm (NSGA), is proposed to optimize the timetable problem
for the remote laboratories to coordinate shared access. The proposed algorithm
utilizes the Simplex algorithm in terms of exploration, and NSGA for sorting
local optimum points with consideration of potential areas. The proposed
algorithm is applied to difficult nonlinear continuous multimodal functions,
and its performance is compared with hybrid Simplex Particle Swarm
Optimization, Simplex Genetic Algorithm, and other heuristic algorithms.
Related papers
- Multi-agricultural Machinery Collaborative Task Assignment Based on
Improved Genetic Hybrid Optimization Algorithm [0.0]
This study proposes a method for multi-agricultural machinery collaborative task assignment based on an improved genetic hybrid optimisation algorithm.
The developed hybrid algorithm can effectively reduce path costs, and the efficiency of the assignment outcomes surpasses that of the classical genetic algorithm.
arXiv Detail & Related papers (2023-12-07T12:42:40Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Hybrid ACO-CI Algorithm for Beam Design problems [0.4397520291340694]
A novel hybrid version of the Ant colony optimization (ACO) method is developed using the sample space reduction technique of the Cohort Intelligence (CI) algorithm.
The proposed work could be investigate for real world applications encompassing domains of engineering, and health care problems.
arXiv Detail & Related papers (2023-03-29T04:37:14Z) - Composite Optimization Algorithms for Sigmoid Networks [3.160070867400839]
We propose the composite optimization algorithms based on the linearized proximal algorithms and the alternating direction of multipliers.
Numerical experiments on Frank's function fitting show that the proposed algorithms perform satisfactorily robustly.
arXiv Detail & Related papers (2023-03-01T15:30:29Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Optimistic Optimisation of Composite Objective with Exponentiated Update [2.1700203922407493]
The algorithms can be interpreted as the combination of the exponentiated gradient and $p$-norm algorithm.
They achieve a sequence-dependent regret upper bound, matching the best-known bounds for sparse target decision variables.
arXiv Detail & Related papers (2022-08-08T11:29:55Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
Maximum a posteriori (MAP) inference in discrete-valued random fields is a fundamental problem in machine learning.
Due to the difficulty of this problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms.
We present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient.
arXiv Detail & Related papers (2020-07-01T18:43:32Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
We introduce a framework for designing primal methods under the decentralized optimization setting where local functions are smooth and strongly convex.
Our approach consists of approximately solving a sequence of sub-problems induced by the accelerated augmented Lagrangian method.
When coupled with accelerated gradient descent, our framework yields a novel primal algorithm whose convergence rate is optimal and matched by recently derived lower bounds.
arXiv Detail & Related papers (2020-06-11T18:49:06Z) - A Heuristic Based on Randomized Greedy Algorithms for the Clustered
Shortest-Path Tree Problem [2.099922236065961]
This paper introduces a new algorithm that combines the major features of RGAs and Shortest Path Tree Algorithm (SPTA) to deal with the Clustered Shortest-Path Tree Problem (CluSPT)
To evaluate the performance of the proposed algorithm, Euclidean benchmarks are selected.
arXiv Detail & Related papers (2020-05-05T08:34:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.