Optimistic Optimisation of Composite Objective with Exponentiated Update
- URL: http://arxiv.org/abs/2208.04065v1
- Date: Mon, 8 Aug 2022 11:29:55 GMT
- Title: Optimistic Optimisation of Composite Objective with Exponentiated Update
- Authors: Weijia Shao, Fikret Sivrikaya and Sahin Albayrak
- Abstract summary: The algorithms can be interpreted as the combination of the exponentiated gradient and $p$-norm algorithm.
They achieve a sequence-dependent regret upper bound, matching the best-known bounds for sparse target decision variables.
- Score: 2.1700203922407493
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a new family of algorithms for the online optimisation of
composite objectives. The algorithms can be interpreted as the combination of
the exponentiated gradient and $p$-norm algorithm. Combined with algorithmic
ideas of adaptivity and optimism, the proposed algorithms achieve a
sequence-dependent regret upper bound, matching the best-known bounds for
sparse target decision variables. Furthermore, the algorithms have efficient
implementations for popular composite objectives and constraints and can be
converted to stochastic optimisation algorithms with the optimal accelerated
rate for smooth objectives.
Related papers
- Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
gradient-based algorithms are widely used in bilevel optimization.
We introduce a without-replacement sampling based algorithm which achieves a faster convergence rate.
We validate our algorithms over both synthetic and real-world applications.
arXiv Detail & Related papers (2024-11-07T17:05:31Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Composite Optimization Algorithms for Sigmoid Networks [3.160070867400839]
We propose the composite optimization algorithms based on the linearized proximal algorithms and the alternating direction of multipliers.
Numerical experiments on Frank's function fitting show that the proposed algorithms perform satisfactorily robustly.
arXiv Detail & Related papers (2023-03-01T15:30:29Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Adaptive Stochastic Optimisation of Nonconvex Composite Objectives [2.1700203922407493]
We propose and analyse a family of generalised composite mirror descent algorithms.
With adaptive step sizes, the proposed algorithms converge without requiring prior knowledge of the problem.
We exploit the low-dimensional structure of the decision sets for high-dimensional problems.
arXiv Detail & Related papers (2022-11-21T18:31:43Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Dynamic Cat Swarm Optimization Algorithm for Backboard Wiring Problem [0.9990687944474739]
This paper presents a powerful swarm intelligence meta-heuristic optimization algorithm called Dynamic Cat Swarm Optimization.
The proposed algorithm suggests a new method to provide a proper balance between these phases by modifying the selection scheme and the seeking mode of the algorithm.
optimization results show the effectiveness of the proposed algorithm, which ranks first compared to several well-known algorithms available in the literature.
arXiv Detail & Related papers (2021-04-27T19:41:27Z) - Optimizing Optimizers: Regret-optimal gradient descent algorithms [9.89901717499058]
We study the existence, uniqueness and consistency of regret-optimal algorithms.
By providing first-order optimality conditions for the control problem, we show that regret-optimal algorithms must satisfy a specific structure in their dynamics.
We present fast numerical methods for approximating them, generating optimization algorithms which directly optimize their long-term regret.
arXiv Detail & Related papers (2020-12-31T19:13:53Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.