Learning To Solve Differential Equations Across Initial Conditions
- URL: http://arxiv.org/abs/2003.12159v2
- Date: Sun, 19 Apr 2020 18:38:32 GMT
- Title: Learning To Solve Differential Equations Across Initial Conditions
- Authors: Shehryar Malik, Usman Anwar, Ali Ahmed and Alireza Aghasi
- Abstract summary: A number of neural network-based partial differential equation solvers have been formulated which provide performances equivalent, and in some cases even superior, to classical solvers.
In this work, we posit the problem of approximating the solution of a fixed partial differential equation for any arbitrary initial conditions as learning a conditional probability distribution.
- Score: 12.66964917876272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, there has been a lot of interest in using neural networks for
solving partial differential equations. A number of neural network-based
partial differential equation solvers have been formulated which provide
performances equivalent, and in some cases even superior, to classical solvers.
However, these neural solvers, in general, need to be retrained each time the
initial conditions or the domain of the partial differential equation changes.
In this work, we posit the problem of approximating the solution of a fixed
partial differential equation for any arbitrary initial conditions as learning
a conditional probability distribution. We demonstrate the utility of our
method on Burger's Equation.
Related papers
- deepFDEnet: A Novel Neural Network Architecture for Solving Fractional
Differential Equations [0.0]
In each fractional differential equation, a deep neural network is used to approximate the unknown function.
The results show that the proposed architecture solves different forms of fractional differential equations with excellent precision.
arXiv Detail & Related papers (2023-09-14T12:58:40Z) - Solving differential equations using physics informed deep learning: a
hand-on tutorial with benchmark tests [0.0]
We revisit the original approach of using deep learning and neural networks to solve differential equations.
We focus on the possibility to use the least possible amount of data into the training process.
A tutorial on a simple equation model illustrates how to put into practice the method for ordinary differential equations.
arXiv Detail & Related papers (2023-02-23T16:08:39Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
Symbolic recovery of differential equations is the ambitious attempt at automating the derivation of governing equations.
We provide both necessary and sufficient conditions for a function to uniquely determine the corresponding differential equation.
We then use our results to devise numerical algorithms aiming to determine whether a function solves a differential equation uniquely.
arXiv Detail & Related papers (2022-10-15T17:32:49Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
We propose a unified framework for learning diverse classes of differential equations (DEs) including all the aforementioned ones.
Instead of modelling the dynamics in the time domain, we model it in the Laplace domain, where the history-dependencies and discontinuities in time can be represented as summations of complex exponentials.
In the experiments, Neural Laplace shows superior performance in modelling and extrapolating the trajectories of diverse classes of DEs.
arXiv Detail & Related papers (2022-06-10T02:14:59Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Conditional physics informed neural networks [85.48030573849712]
We introduce conditional PINNs (physics informed neural networks) for estimating the solution of classes of eigenvalue problems.
We show that a single deep neural network can learn the solution of partial differential equations for an entire class of problems.
arXiv Detail & Related papers (2021-04-06T18:29:14Z) - Elvet -- a neural network-based differential equation and variational
problem solver [0.0]
Elvet is a Python package for solving differential equations and variational problems.
It can deal with any system of coupled ordinary or partial differential equations with arbitrary initial and boundary conditions.
arXiv Detail & Related papers (2021-03-26T16:40:49Z) - Computational characteristics of feedforward neural networks for solving
a stiff differential equation [0.0]
We study the solution of a simple but fundamental stiff ordinary differential equation modelling a damped system.
We show that it is possible to identify preferable choices to be made for parameters and methods.
Overall we extend the current literature in the field by showing what can be done in order to obtain reliable and accurate results by the neural network approach.
arXiv Detail & Related papers (2020-12-03T12:22:24Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
We formulate a new neural operator by parameterizing the integral kernel directly in Fourier space.
We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation.
It is up to three orders of magnitude faster compared to traditional PDE solvers.
arXiv Detail & Related papers (2020-10-18T00:34:21Z) - Solving Differential Equations Using Neural Network Solution Bundles [1.2891210250935146]
We propose a neural network be used as a solution bundle, a collection of solutions to an ODE for various initial states and system parameters.
The solution bundle exhibits fast, parallelizable evaluation of the system state, facilitating the use of Bayesian inference for parameter estimation.
arXiv Detail & Related papers (2020-06-17T02:44:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.