How Expressive are Graph Neural Networks in Recommendation?
- URL: http://arxiv.org/abs/2308.11127v3
- Date: Fri, 15 Sep 2023 21:49:23 GMT
- Title: How Expressive are Graph Neural Networks in Recommendation?
- Authors: Xuheng Cai, Lianghao Xia, Xubin Ren, Chao Huang
- Abstract summary: Graph Neural Networks (GNNs) have demonstrated superior performance on various graph learning tasks, including recommendation.
Recent research has explored the expressiveness of GNNs in general, demonstrating that message passing GNNs are at most as powerful as the Weisfeiler-Lehman test.
We propose the topological closeness metric to evaluate GNNs' ability to capture the structural distance between nodes.
- Score: 17.31401354442106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have demonstrated superior performance on
various graph learning tasks, including recommendation, where they leverage
user-item collaborative filtering signals in graphs. However, theoretical
formulations of their capability are scarce, despite their empirical
effectiveness in state-of-the-art recommender models. Recently, research has
explored the expressiveness of GNNs in general, demonstrating that message
passing GNNs are at most as powerful as the Weisfeiler-Lehman test, and that
GNNs combined with random node initialization are universal. Nevertheless, the
concept of "expressiveness" for GNNs remains vaguely defined. Most existing
works adopt the graph isomorphism test as the metric of expressiveness, but
this graph-level task may not effectively assess a model's ability in
recommendation, where the objective is to distinguish nodes of different
closeness. In this paper, we provide a comprehensive theoretical analysis of
the expressiveness of GNNs in recommendation, considering three levels of
expressiveness metrics: graph isomorphism (graph-level), node automorphism
(node-level), and topological closeness (link-level). We propose the
topological closeness metric to evaluate GNNs' ability to capture the
structural distance between nodes, which aligns closely with the objective of
recommendation. To validate the effectiveness of this new metric in evaluating
recommendation performance, we introduce a learning-less GNN algorithm that is
optimal on the new metric and can be optimal on the node-level metric with
suitable modification. We conduct extensive experiments comparing the proposed
algorithm against various types of state-of-the-art GNN models to explore the
explainability of the new metric in the recommendation task. For
reproducibility, implementation codes are available at
https://github.com/HKUDS/GTE.
Related papers
- Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) is a non-neural model designed for node classification tasks.
Unlike traditional graph algorithms that use only a fraction of the information accessible to GNNs, our proposed model simultaneously leverages both node features and the relationships between entities.
arXiv Detail & Related papers (2024-11-19T08:32:14Z) - Breaking the Entanglement of Homophily and Heterophily in
Semi-supervised Node Classification [25.831508778029097]
We introduce AMUD, which quantifies the relationship between node profiles and topology from a statistical perspective.
We also propose ADPA as a new directed graph learning paradigm for AMUD.
arXiv Detail & Related papers (2023-12-07T07:54:11Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
We study a new problem, GNN model evaluation, that aims to assess the performance of a specific GNN model trained on labeled and observed graphs.
We propose a two-stage GNN model evaluation framework, including (1) DiscGraph set construction and (2) GNNEvaluator training and inference.
Under the effective training supervision from the DiscGraph set, GNNEvaluator learns to precisely estimate node classification accuracy of the to-be-evaluated GNN model.
arXiv Detail & Related papers (2023-10-23T05:51:59Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
We propose a new metric based on von Neumann entropy to re-examine the heterophily problem of GNNs.
We also propose a Conv-Agnostic GNN framework (CAGNNs) to enhance the performance of most GNNs on heterophily datasets.
arXiv Detail & Related papers (2022-03-19T14:26:43Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - A Collective Learning Framework to Boost GNN Expressiveness [25.394456460032625]
We consider the task of inductive node classification using Graph Neural Networks (GNNs) in supervised and semi-supervised settings.
We propose a general collective learning approach to increase the representation power of any existing GNN.
We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy.
arXiv Detail & Related papers (2020-03-26T22:07:28Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
Graph neural networks (GNNs) have received much attention recently because of their excellent performance on graph-based tasks.
We propose self-enhanced GNN (SEG), which improves the quality of the input data using the outputs of existing GNN models.
SEG consistently improves the performance of well-known GNN models such as GCN, GAT and SGC across different datasets.
arXiv Detail & Related papers (2020-02-18T12:27:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.