HERS: Homomorphically Encrypted Representation Search
- URL: http://arxiv.org/abs/2003.12197v3
- Date: Sat, 18 Jun 2022 19:26:45 GMT
- Title: HERS: Homomorphically Encrypted Representation Search
- Authors: Joshua J. Engelsma and Anil K. Jain and Vishnu Naresh Boddeti
- Abstract summary: We present a method to search for a probe (or query) image representation against a large gallery in the encrypted domain.
Our encryption scheme is agnostic to how the fixed-length representation is obtained and can therefore be applied to any fixed-length representation in any application domain.
- Score: 56.87295029135185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a method to search for a probe (or query) image representation
against a large gallery in the encrypted domain. We require that the probe and
gallery images be represented in terms of a fixed-length representation, which
is typical for representations obtained from learned networks. Our encryption
scheme is agnostic to how the fixed-length representation is obtained and can
therefore be applied to any fixed-length representation in any application
domain. Our method, dubbed HERS (Homomorphically Encrypted Representation
Search), operates by (i) compressing the representation towards its estimated
intrinsic dimensionality with minimal loss of accuracy (ii) encrypting the
compressed representation using the proposed fully homomorphic encryption
scheme, and (iii) efficiently searching against a gallery of encrypted
representations directly in the encrypted domain, without decrypting them.
Numerical results on large galleries of face, fingerprint, and object datasets
such as ImageNet show that, for the first time, accurate and fast image search
within the encrypted domain is feasible at scale (500 seconds; $275\times$
speed up over state-of-the-art for encrypted search against a gallery of 100
million). Code is available at
https://github.com/human-analysis/hers-encrypted-image-search
Related papers
- Enabling Practical and Privacy-Preserving Image Processing [5.526464269029825]
Homomorphic Encryption (FHE) enables computations on encrypted data, preserving confidentiality without the need for decryption.
Traditional FHE methods often encrypt images by monolithic data blocks, instead of pixels.
We propose and implement a pixel-level homomorphic encryption approach, iCHEETAH, based on the CKKS scheme.
arXiv Detail & Related papers (2024-09-05T14:22:02Z) - Recoverable Privacy-Preserving Image Classification through Noise-like
Adversarial Examples [26.026171363346975]
Cloud-based image related services such as classification have become crucial.
In this study, we propose a novel privacypreserving image classification scheme.
encrypted images can be decrypted back into their original form with high fidelity (recoverable) using a secret key.
arXiv Detail & Related papers (2023-10-19T13:01:58Z) - ArctyrEX : Accelerated Encrypted Execution of General-Purpose
Applications [6.19586646316608]
Fully Homomorphic Encryption (FHE) is a cryptographic method that guarantees the privacy and security of user data during computation.
We develop new techniques for accelerated encrypted execution and demonstrate the significant performance advantages of our approach.
arXiv Detail & Related papers (2023-06-19T15:15:41Z) - Human-imperceptible, Machine-recognizable Images [76.01951148048603]
A major conflict is exposed relating to software engineers between better developing AI systems and distancing from the sensitive training data.
This paper proposes an efficient privacy-preserving learning paradigm, where images are encrypted to become human-imperceptible, machine-recognizable''
We show that the proposed paradigm can ensure the encrypted images have become human-imperceptible while preserving machine-recognizable information.
arXiv Detail & Related papers (2023-06-06T13:41:37Z) - Publicly-Verifiable Deletion via Target-Collapsing Functions [81.13800728941818]
We show that targetcollapsing enables publiclyverifiable deletion (PVD)
We build on this framework to obtain a variety of primitives supporting publiclyverifiable deletion from weak cryptographic assumptions.
arXiv Detail & Related papers (2023-03-15T15:00:20Z) - STAIR: Learning Sparse Text and Image Representation in Grounded Tokens [84.14528645941128]
We show that it is possible to build a sparse semantic representation that is as powerful as, or even better than, dense presentations.
We extend the CLIP model and build a sparse text and image representation (STAIR), where the image and text are mapped to a sparse token space.
It significantly outperforms a CLIP model with +$4.9%$ and +$4.3%$ absolute Recall@1 improvement.
arXiv Detail & Related papers (2023-01-30T17:21:30Z) - Hiding Images in Deep Probabilistic Models [58.23127414572098]
We describe a different computational framework to hide images in deep probabilistic models.
Specifically, we use a DNN to model the probability density of cover images, and hide a secret image in one particular location of the learned distribution.
We demonstrate the feasibility of our SinGAN approach in terms of extraction accuracy and model security.
arXiv Detail & Related papers (2022-10-05T13:33:25Z) - EViT: Privacy-Preserving Image Retrieval via Encrypted Vision
Transformer in Cloud Computing [9.41257807502252]
We propose a novel paradigm named Encrypted Vision Transformer (EViT), which advances the discriminative representations capability of cipher-images.
EViT achieves both excellent encryption and retrieval performance, outperforming current schemes in terms of retrieval accuracy by large margins while protecting image privacy effectively.
arXiv Detail & Related papers (2022-08-31T07:07:21Z) - Asymmetric Hash Code Learning for Remote Sensing Image Retrieval [22.91678927865952]
We propose a novel deep hashing method, named asymmetric hash code learning (AHCL), for remote sensing image retrieval.
The AHCL generates the hash codes of query and database images in an asymmetric way.
The experimental results on three public datasets demonstrate that the proposed method outperforms symmetric methods in terms of retrieval accuracy and efficiency.
arXiv Detail & Related papers (2022-01-15T07:00:38Z) - Free-Form Image Inpainting via Contrastive Attention Network [64.05544199212831]
In image inpainting tasks, masks with any shapes can appear anywhere in images which form complex patterns.
It is difficult for encoders to capture such powerful representations under this complex situation.
We propose a self-supervised Siamese inference network to improve the robustness and generalization.
arXiv Detail & Related papers (2020-10-29T14:46:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.