Enabling Practical and Privacy-Preserving Image Processing
- URL: http://arxiv.org/abs/2409.03568v1
- Date: Thu, 5 Sep 2024 14:22:02 GMT
- Title: Enabling Practical and Privacy-Preserving Image Processing
- Authors: Chao Wang, Shubing Yang, Xiaoyan Sun, Jun Dai, Dongfang Zhao,
- Abstract summary: Homomorphic Encryption (FHE) enables computations on encrypted data, preserving confidentiality without the need for decryption.
Traditional FHE methods often encrypt images by monolithic data blocks, instead of pixels.
We propose and implement a pixel-level homomorphic encryption approach, iCHEETAH, based on the CKKS scheme.
- Score: 5.526464269029825
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Fully Homomorphic Encryption (FHE) enables computations on encrypted data, preserving confidentiality without the need for decryption. However, FHE is often hindered by significant performance overhead, particularly for high-precision and complex data like images. Due to serious efficiency issues, traditional FHE methods often encrypt images by monolithic data blocks (such as pixel rows), instead of pixels. However, this strategy compromises the advantages of homomorphic operations and disables pixel-level image processing. In this study, we address these challenges by proposing and implementing a pixel-level homomorphic encryption approach, iCHEETAH, based on the CKKS scheme. To enhance computational efficiency, we introduce three novel caching mechanisms to pre-encrypt radix values or frequently occurring pixel values, substantially reducing redundant encryption operations. Extensive experiments demonstrate that our approach achieves up to a 19-fold improvement in encryption speed compared to the original CKKS, while maintaining high image quality. Additionally, real-world image applications such as mean filtering, brightness enhancement, image matching and watermarking are tested based on FHE, showcasing up to a 91.53% speed improvement. We also proved that our method is IND-CPA (Indistinguishability under Chosen Plaintext Attack) secure, providing strong encryption security. These results underscore the practicality and efficiency of iCHEETAH, marking a significant advancement in privacy-preserving image processing at scale.
Related papers
- Multi-Layered Security System: Integrating Quantum Key Distribution with Classical Cryptography to Enhance Steganographic Security [0.0]
We present a novel cryptographic system that integrates Quantum Key Distribution (QKD) with classical encryption techniques.
Our approach leverages the E91 QKD protocol to generate a shared secret key between communicating parties.
This key is then hashed using the Secure Hash Algorithm (SHA) to provide a fixedlength, high-entropy key.
arXiv Detail & Related papers (2024-08-13T15:20:29Z) - Deep Learning and Chaos: A combined Approach To Image Encryption and Decryption [1.8749305679160366]
We introduce a novel image encryption and decryption algorithm using hyperchaotic signals from the novel 3D hyperchaotic map, 2D memristor map, Convolutional Neural Network (CNN)
The robustness of the encryption algorithm is shown by key sensitivity analysis, i.e., the average sensitivity of the algorithm to key elements.
arXiv Detail & Related papers (2024-06-24T16:56:22Z) - A Hybrid Image Encryption Scheme based on Chaos and a DPA-Resistant Sbox [0.0]
Recently, Khalid M. Hosny presented an image encryption scheme based on 6D hyper chaotic mapping and Q-Fibonacci matrix.
In this paper, based on Khaled Hosny's design, a new effective design is presented that has improved encryption security and efficiency.
arXiv Detail & Related papers (2023-12-23T15:26:15Z) - PRO-Face S: Privacy-preserving Reversible Obfuscation of Face Images via
Secure Flow [69.78820726573935]
We name it PRO-Face S, short for Privacy-preserving Reversible Obfuscation of Face images via Secure flow-based model.
In the framework, an Invertible Neural Network (INN) is utilized to process the input image along with its pre-obfuscated form, and generate the privacy protected image that visually approximates to the pre-obfuscated one.
arXiv Detail & Related papers (2023-07-18T10:55:54Z) - You Can Mask More For Extremely Low-Bitrate Image Compression [80.7692466922499]
Learned image compression (LIC) methods have experienced significant progress during recent years.
LIC methods fail to explicitly explore the image structure and texture components crucial for image compression.
We present DA-Mask that samples visible patches based on the structure and texture of original images.
We propose a simple yet effective masked compression model (MCM), the first framework that unifies LIC and LIC end-to-end for extremely low-bitrate compression.
arXiv Detail & Related papers (2023-06-27T15:36:22Z) - Human-imperceptible, Machine-recognizable Images [76.01951148048603]
A major conflict is exposed relating to software engineers between better developing AI systems and distancing from the sensitive training data.
This paper proposes an efficient privacy-preserving learning paradigm, where images are encrypted to become human-imperceptible, machine-recognizable''
We show that the proposed paradigm can ensure the encrypted images have become human-imperceptible while preserving machine-recognizable information.
arXiv Detail & Related papers (2023-06-06T13:41:37Z) - DiffProtect: Generate Adversarial Examples with Diffusion Models for
Facial Privacy Protection [64.77548539959501]
DiffProtect produces more natural-looking encrypted images than state-of-the-art methods.
It achieves significantly higher attack success rates, e.g., 24.5% and 25.1% absolute improvements on the CelebA-HQ and FFHQ datasets.
arXiv Detail & Related papers (2023-05-23T02:45:49Z) - Attribute-Guided Encryption with Facial Texture Masking [64.77548539959501]
We propose Attribute Guided Encryption with Facial Texture Masking to protect users from unauthorized facial recognition systems.
Our proposed method produces more natural-looking encrypted images than state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T23:50:43Z) - A Pixel-based Encryption Method for Privacy-Preserving Deep Learning
Models [5.749044590090683]
We propose an efficient pixel-based perceptual encryption method.
The method provides a necessary level of security while preserving the intrinsic properties of the original image.
Thereby, can enable deep learning (DL) applications in the encryption domain.
arXiv Detail & Related papers (2022-03-31T03:42:11Z) - SISA: Securing Images by Selective Alteration [0.0]
We present a comparative analysis of the partial and full encryption of the photos.
Instead of encrypting or blurring the entire photograph, we only encode selected regions of the image.
We leverage the machine learning algorithms like Mask-RCNN and YOLO to select the region of interest.
arXiv Detail & Related papers (2021-06-20T05:31:47Z) - HERS: Homomorphically Encrypted Representation Search [56.87295029135185]
We present a method to search for a probe (or query) image representation against a large gallery in the encrypted domain.
Our encryption scheme is agnostic to how the fixed-length representation is obtained and can therefore be applied to any fixed-length representation in any application domain.
arXiv Detail & Related papers (2020-03-27T01:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.