Visually Image Encryption and Compression Using a CNN-Based Auto Encoder
- URL: http://arxiv.org/abs/2504.00497v1
- Date: Tue, 01 Apr 2025 07:43:36 GMT
- Title: Visually Image Encryption and Compression Using a CNN-Based Auto Encoder
- Authors: Mahdi Madani, El-Bay Bourennane,
- Abstract summary: This paper proposes a visual encryption method to ensure the confidentiality of digital images.<n>The model used is based on an autoencoder using aConvolutional Neural Network (CNN)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a visual encryption method to ensure the confidentiality of digital images. The model used is based on an autoencoder using aConvolutional Neural Network (CNN) to ensure the protection of the user data on both the sender side (encryption process) and the receiver side(decryption process)in a symmetric mode. To train and test the model, we used the MNIST and CIFAR-10 datasets. Our focus lies in generating an encrypted dataset by combining the original dataset with a random mask. Then, a convolutional autoencoder in the masked dataset will be designed and trained to learn essential image features in a reduced-dimensional latent space and reconstruct the image from this space. The used mask can be considered as a secret key known in standard cryptographic algorithms which allows the receiver of the masked data to recover the plain data. The implementation of this proposed encryption model demonstrates efficacy in preserving data confidentiality and integrity while reducing the dimensionality (for example we pass from 3072 Bytes to 1024 Bytes for CIFAR-10 images). Experimental results show that the used CNN exhibits a proficient encryption and decryption process on the MNIST dataset, and a proficient encryption and acceptable decryption process on the CIFAR-10 dataset.
Related papers
- Image Encryption Using DNA Encoding, Snake Permutation and Chaotic Substitution Techniques [0.7743851353380347]
This paper presents a new image encryption scheme using DNA encoding, snake permutation and chaotic substitution techniques.<n>DNA encoding and snake permutation modules ensure effective scrambling of the pixels.<n>For the confusion part, the chaotic substitution technique is implemented, which substitutes the pixel values chosen randomly from 3 S-boxes.
arXiv Detail & Related papers (2025-03-12T03:54:37Z) - CipherFace: A Fully Homomorphic Encryption-Driven Framework for Secure Cloud-Based Facial Recognition [0.0]
This paper introduces CipherFace, a homomorphic encryption-driven framework for secure cloud-based facial recognition.<n>By leveraging FHE, CipherFace ensures the privacy of embeddings while utilizing the cloud for efficient distance computation.<n>We propose a novel encrypted distance computation method for both Euclidean and Cosine, addressing key challenges in performing secure similarity calculations on encrypted data.
arXiv Detail & Related papers (2025-02-22T19:03:04Z) - Secure Semantic Communication With Homomorphic Encryption [52.5344514499035]
This paper explores the feasibility of applying homomorphic encryption to SemCom.<n>We propose a task-oriented SemCom scheme secured through homomorphic encryption.
arXiv Detail & Related papers (2025-01-17T13:26:14Z) - Can Encrypted Images Still Train Neural Networks? Investigating Image Information and Random Vortex Transformation [51.475827684468875]
We establish a novel framework for measuring image information content to evaluate the variation in information content during image transformations.<n>We also propose a novel image encryption algorithm called Random Vortex Transformation.
arXiv Detail & Related papers (2024-11-25T09:14:53Z) - Attack GAN (AGAN ): A new Security Evaluation Tool for Perceptual Encryption [1.6385815610837167]
Training state-of-the-art (SOTA) deep learning models requires a large amount of data.
Perceptional encryption converts images into an unrecognizable format to protect the sensitive visual information in the training data.
This comes at the cost of a significant reduction in the accuracy of the models.
Adversarial Visual Information Hiding (AV IH) overcomes this drawback to protect image privacy by attempting to create encrypted images that are unrecognizable to the human eye.
arXiv Detail & Related papers (2024-07-09T06:03:32Z) - Recoverable Privacy-Preserving Image Classification through Noise-like
Adversarial Examples [26.026171363346975]
Cloud-based image related services such as classification have become crucial.
In this study, we propose a novel privacypreserving image classification scheme.
encrypted images can be decrypted back into their original form with high fidelity (recoverable) using a secret key.
arXiv Detail & Related papers (2023-10-19T13:01:58Z) - Human-imperceptible, Machine-recognizable Images [76.01951148048603]
A major conflict is exposed relating to software engineers between better developing AI systems and distancing from the sensitive training data.
This paper proposes an efficient privacy-preserving learning paradigm, where images are encrypted to become human-imperceptible, machine-recognizable''
We show that the proposed paradigm can ensure the encrypted images have become human-imperceptible while preserving machine-recognizable information.
arXiv Detail & Related papers (2023-06-06T13:41:37Z) - Hiding Images in Deep Probabilistic Models [58.23127414572098]
We describe a different computational framework to hide images in deep probabilistic models.
Specifically, we use a DNN to model the probability density of cover images, and hide a secret image in one particular location of the learned distribution.
We demonstrate the feasibility of our SinGAN approach in terms of extraction accuracy and model security.
arXiv Detail & Related papers (2022-10-05T13:33:25Z) - EViT: Privacy-Preserving Image Retrieval via Encrypted Vision
Transformer in Cloud Computing [9.41257807502252]
We propose a novel paradigm named Encrypted Vision Transformer (EViT), which advances the discriminative representations capability of cipher-images.
EViT achieves both excellent encryption and retrieval performance, outperforming current schemes in terms of retrieval accuracy by large margins while protecting image privacy effectively.
arXiv Detail & Related papers (2022-08-31T07:07:21Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
Lossy image compression is one of the most commonly used operators for digital images.
We propose a novel invertible framework called Invertible Lossy Compression (ILC) to largely mitigate the information loss problem.
arXiv Detail & Related papers (2020-06-22T04:04:56Z) - HERS: Homomorphically Encrypted Representation Search [56.87295029135185]
We present a method to search for a probe (or query) image representation against a large gallery in the encrypted domain.
Our encryption scheme is agnostic to how the fixed-length representation is obtained and can therefore be applied to any fixed-length representation in any application domain.
arXiv Detail & Related papers (2020-03-27T01:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.