AirRL: A Reinforcement Learning Approach to Urban Air Quality Inference
- URL: http://arxiv.org/abs/2003.12205v1
- Date: Fri, 27 Mar 2020 02:04:00 GMT
- Title: AirRL: A Reinforcement Learning Approach to Urban Air Quality Inference
- Authors: Huiqiang Zhong and Cunxiang Yin and Xiaohui Wu and Jinchang Luo and
JiaWei He
- Abstract summary: Urban air pollution has become a major environmental problem that threatens public health.
One of the challenges is how to effectively select some relevant stations for air quality inference.
We propose a novel model based on reinforcement learning for urban air quality inference.
- Score: 7.238981927352622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Urban air pollution has become a major environmental problem that threatens
public health. It has become increasingly important to infer fine-grained urban
air quality based on existing monitoring stations. One of the challenges is how
to effectively select some relevant stations for air quality inference. In this
paper, we propose a novel model based on reinforcement learning for urban air
quality inference. The model consists of two modules: a station selector and an
air quality regressor. The station selector dynamically selects the most
relevant monitoring stations when inferring air quality. The air quality
regressor takes in the selected stations and makes air quality inference with
deep neural network. We conduct experiments on a real-world air quality dataset
and our approach achieves the highest performance compared with several popular
solutions, and the experiments show significant effectiveness of proposed model
in tackling problems of air quality inference.
Related papers
- Enhancing Data Quality in Federated Fine-Tuning of Foundation Models [54.757324343062734]
We propose a data quality control pipeline for federated fine-tuning of foundation models.
This pipeline computes scores reflecting the quality of training data and determines a global threshold for a unified standard.
Our experiments show that the proposed quality control pipeline facilitates the effectiveness and reliability of the model training, leading to better performance.
arXiv Detail & Related papers (2024-03-07T14:28:04Z) - GreenEyes: An Air Quality Evaluating Model based on WaveNet [11.513011576336744]
We propose a deep neural network model, which consists of a WaveNet-based backbone block for learning representations of sequences and an LSTM with a Temporal Attention module.
We show our model can effectively predict the air quality level of the next timestamp given any segment of the air quality data from the data set.
arXiv Detail & Related papers (2022-12-08T10:28:57Z) - AirFormer: Predicting Nationwide Air Quality in China with Transformers [43.48965814702661]
AirFormer is a novel Transformer architecture to collectively predict nationwide air quality in China.
AirFormer reduces prediction errors by 5%8% on 72-hour future predictions.
arXiv Detail & Related papers (2022-11-29T07:22:49Z) - Deep Gaussian Processes for Air Quality Inference [3.2687545875380186]
Air pollution kills around 7 million people annually, and approximately 2.4 billion people are exposed to hazardous air pollution.
This work demonstrates that Deep Gaussian models (DGPs) are a promising model for the task of inference.
arXiv Detail & Related papers (2022-11-18T11:42:42Z) - Dynamic Price of Parking Service based on Deep Learning [68.8204255655161]
The improvement of air-quality in urban areas is one of the main concerns of public government bodies.
This concern emerges from the evidence between the air quality and the public health.
Proposal for dynamic prices in regulated parking services is presented.
arXiv Detail & Related papers (2022-01-11T20:31:35Z) - AirSPEC: An IoT-empowered Air Quality Monitoring System integrated with
a Machine Learning Framework to Detect and Predict defined Air Quality
parameters [0.0]
A novel Internet of Things framework is proposed which is easily implementable, semantically distributive, and empowered by a machine learning model.
The proposed system is equipped with a NodeRED dashboard which processes, visualizes, and stores the primary sensor data.
The dashboard is integrated with a machine-learning model to obtain temporal and geo-spatial air quality predictions.
arXiv Detail & Related papers (2021-11-28T12:13:30Z) - AIREX: Neural Network-based Approach for Air Quality Inference in
Unmonitored Cities [0.491574468325115]
Monitoring stations have been established to continuously obtain air quality information, but they do not cover all areas.
Existing methods aim to infer air quality of locations only in monitored cities, they do not assume inferring air quality in unmonitored cities.
We propose a neural network-based approach AIREX to accurately infer air quality in unmonitored cities.
arXiv Detail & Related papers (2021-08-16T14:41:14Z) - HighAir: A Hierarchical Graph Neural Network-Based Air Quality
Forecasting Method [8.86417830514213]
HighAir is a hierarchical graph neural network-based air quality forecasting method.
We construct a city-level graph and station-level graphs from a hierarchical perspective.
We compare HighAir with the state-of-the-art air quality forecasting methods on the dataset of Yangtze River Delta city group.
arXiv Detail & Related papers (2021-01-12T02:31:14Z) - Joint Air Quality and Weather Prediction Based on Multi-Adversarial
Spatiotemporal Networks [44.34236994440102]
We propose the Multi-versaadrial recurrent Graph Neural Networks (MasterGNN) for joint air quality and weather predictions.
Specifically, we first propose a recurrent graph neural network to model heterogeneous autotemporalcorrelation among air quality and weather monitoring stations.
arXiv Detail & Related papers (2020-12-30T04:42:03Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
We design a navigation policy for multiple unmanned aerial vehicles (UAVs) where mobile base stations (BSs) are deployed.
We incorporate different contextual information such as energy and age of information (AoI) constraints to ensure the data freshness at the ground BS.
By applying the proposed trained model, an effective real-time trajectory policy for the UAV-BSs captures the observable network states over time.
arXiv Detail & Related papers (2020-02-21T07:29:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.