AIREX: Neural Network-based Approach for Air Quality Inference in
Unmonitored Cities
- URL: http://arxiv.org/abs/2108.07120v1
- Date: Mon, 16 Aug 2021 14:41:14 GMT
- Title: AIREX: Neural Network-based Approach for Air Quality Inference in
Unmonitored Cities
- Authors: Yuya Sasaki, Kei Harada, Shohei Yamasaki, Makoto Onizuka
- Abstract summary: Monitoring stations have been established to continuously obtain air quality information, but they do not cover all areas.
Existing methods aim to infer air quality of locations only in monitored cities, they do not assume inferring air quality in unmonitored cities.
We propose a neural network-based approach AIREX to accurately infer air quality in unmonitored cities.
- Score: 0.491574468325115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Urban air pollution is a major environmental problem affecting human health
and quality of life. Monitoring stations have been established to continuously
obtain air quality information, but they do not cover all areas. Thus, there
are numerous methods for spatially fine-grained air quality inference. Since
existing methods aim to infer air quality of locations only in monitored
cities, they do not assume inferring air quality in unmonitored cities. In this
paper, we first study the air quality inference in unmonitored cities. To
accurately infer air quality in unmonitored cities, we propose a neural
network-based approach AIREX. The novelty of AIREX is employing a
mixture-of-experts approach, which is a machine learning technique based on the
divide-and-conquer principle, to learn correlations of air quality between
multiple cities. To further boost the performance, it employs attention
mechanisms to compute impacts of air quality inference from the monitored
cities to the locations in the unmonitored city. We show, through experiments
on a real-world air quality dataset, that AIREX achieves higher accuracy than
state-of-the-art methods.
Related papers
- Towards an Autonomous Surface Vehicle Prototype for Artificial Intelligence Applications of Water Quality Monitoring [68.41400824104953]
This paper presents a vehicle prototype that addresses the use of Artificial Intelligence algorithms and enhanced sensing techniques for water quality monitoring.
The vehicle is fully equipped with high-quality sensors to measure water quality parameters and water depth.
By means of a stereo-camera, it also can detect and locate macro-plastics in real environments.
arXiv Detail & Related papers (2024-10-08T10:35:32Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Dynamic Price of Parking Service based on Deep Learning [68.8204255655161]
The improvement of air-quality in urban areas is one of the main concerns of public government bodies.
This concern emerges from the evidence between the air quality and the public health.
Proposal for dynamic prices in regulated parking services is presented.
arXiv Detail & Related papers (2022-01-11T20:31:35Z) - The State of Aerial Surveillance: A Survey [62.198765910573556]
This paper provides a comprehensive overview of human-centric aerial surveillance tasks from a computer vision and pattern recognition perspective.
The main object of interest is humans, where single or multiple subjects are to be detected, identified, tracked, re-identified and have their behavior analyzed.
arXiv Detail & Related papers (2022-01-09T20:13:27Z) - Using Machine Learning to Predict Air Quality Index in New Delhi [0.0]
We use a Support Vector Regression (SVR) model to forecast the levels of various pollutants and the air quality index.
The model predicts levels of various pollutants, like, sulfur dioxide, carbon monoxide, nitrogen dioxide, particulate matter 2.5, and ground-level ozone, at an accuracy of 93.4 percent.
arXiv Detail & Related papers (2021-12-10T00:20:05Z) - AirSPEC: An IoT-empowered Air Quality Monitoring System integrated with
a Machine Learning Framework to Detect and Predict defined Air Quality
parameters [0.0]
A novel Internet of Things framework is proposed which is easily implementable, semantically distributive, and empowered by a machine learning model.
The proposed system is equipped with a NodeRED dashboard which processes, visualizes, and stores the primary sensor data.
The dashboard is integrated with a machine-learning model to obtain temporal and geo-spatial air quality predictions.
arXiv Detail & Related papers (2021-11-28T12:13:30Z) - HighAir: A Hierarchical Graph Neural Network-Based Air Quality
Forecasting Method [8.86417830514213]
HighAir is a hierarchical graph neural network-based air quality forecasting method.
We construct a city-level graph and station-level graphs from a hierarchical perspective.
We compare HighAir with the state-of-the-art air quality forecasting methods on the dataset of Yangtze River Delta city group.
arXiv Detail & Related papers (2021-01-12T02:31:14Z) - Joint Air Quality and Weather Prediction Based on Multi-Adversarial
Spatiotemporal Networks [44.34236994440102]
We propose the Multi-versaadrial recurrent Graph Neural Networks (MasterGNN) for joint air quality and weather predictions.
Specifically, we first propose a recurrent graph neural network to model heterogeneous autotemporalcorrelation among air quality and weather monitoring stations.
arXiv Detail & Related papers (2020-12-30T04:42:03Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z) - AiR -- An Augmented Reality Application for Visualizing Air Pollution [5.564705758320338]
AiR considers the air quality measured by CPCB, in a locality detected by the user's GPS or in a locality of user's choice, and visualizes various air pollutants present in the locality.
AiR also creates awareness in an interactive manner about the different pollutants, sources, and their impacts on health.
arXiv Detail & Related papers (2020-06-03T10:03:47Z) - AirRL: A Reinforcement Learning Approach to Urban Air Quality Inference [7.238981927352622]
Urban air pollution has become a major environmental problem that threatens public health.
One of the challenges is how to effectively select some relevant stations for air quality inference.
We propose a novel model based on reinforcement learning for urban air quality inference.
arXiv Detail & Related papers (2020-03-27T02:04:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.