論文の概要: Learning to Optimize Non-Rigid Tracking
- arxiv url: http://arxiv.org/abs/2003.12230v1
- Date: Fri, 27 Mar 2020 04:40:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-19 05:02:54.300798
- Title: Learning to Optimize Non-Rigid Tracking
- Title(参考訳): 非剛性トラッキングを最適化する学習
- Authors: Yang Li, Alja\v{z} Bo\v{z}i\v{c}, Tianwei Zhang, Yanli Ji, Tatsuya
Harada, Matthias Nie{\ss}ner
- Abstract要約: 我々は、堅牢性を改善し、解法収束を高速化するために学習可能な最適化を採用する。
まず、CNNを通じてエンドツーエンドに学習された深い特徴にアライメントデータ項を統合することにより、追跡対象をアップグレードする。
次に,プレコンディショニング手法と学習手法のギャップを,プレコンディショナを生成するためにトレーニングされたConditionNetを導入することで埋める。
- 参考スコア(独自算出の注目度): 54.94145312763044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the widespread solutions for non-rigid tracking has a nested-loop
structure: with Gauss-Newton to minimize a tracking objective in the outer
loop, and Preconditioned Conjugate Gradient (PCG) to solve a sparse linear
system in the inner loop. In this paper, we employ learnable optimizations to
improve tracking robustness and speed up solver convergence. First, we upgrade
the tracking objective by integrating an alignment data term on deep features
which are learned end-to-end through CNN. The new tracking objective can
capture the global deformation which helps Gauss-Newton to jump over local
minimum, leading to robust tracking on large non-rigid motions. Second, we
bridge the gap between the preconditioning technique and learning method by
introducing a ConditionNet which is trained to generate a preconditioner such
that PCG can converge within a small number of steps. Experimental results
indicate that the proposed learning method converges faster than the original
PCG by a large margin.
- Abstract(参考訳): 非剛性追跡の一般的な解の1つはネストループ構造を持ち、ガウスニュートンは外側ループの追跡目標を最小限に抑え、プレコンディション付き共役勾配(PCG)は内側ループのスパース線形系を解く。
本稿では,学習可能な最適化を用いてロバスト性を改善し,解法収束を高速化する。
まず、cnnを通じてエンドツーエンドで学習される深い機能にアライメントデータ用語を統合することで、トラッキング目標をアップグレードする。
新しい追跡対象はグローバルな変形を捉え、ガウス・ニュートンは局所的な最小値を飛び越え、大きな非剛体運動のロバストな追跡につながる。
第2に,pcgが少数のステップで収束できるようにプリコンディショナーを生成するように訓練された条件ネットを導入することで,プリコンディショニング手法と学習方法のギャップを埋める。
実験の結果,提案手法は,従来のpcgよりも大きなマージンで高速に収束することがわかった。
関連論文リスト
- Unified Gradient-Based Machine Unlearning with Remain Geometry Enhancement [29.675650285351768]
深層ニューラルネットワークのプライバシーと信頼性を高めるために、機械学習(MU)が登場した。
近似MUは大規模モデルの実用的手法である。
本稿では,最新の学習方向を暗黙的に近似する高速スローパラメータ更新手法を提案する。
論文 参考訳(メタデータ) (2024-09-29T15:17:33Z) - Optimization by Parallel Quasi-Quantum Annealing with Gradient-Based Sampling [0.0]
本研究では、連続緩和による勾配に基づく更新と準量子アナリング(QQA)を組み合わせた別のアプローチを提案する。
数値実験により,本手法はiSCOと学習型解法に匹敵する性能を有する汎用解法であることが示された。
論文 参考訳(メタデータ) (2024-09-02T12:55:27Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization [87.21285093582446]
Diffusion Generative Flow Samplers (DGFS) はサンプルベースのフレームワークであり、学習プロセスを短い部分的軌道セグメントに分解することができる。
生成フローネットワーク(GFlowNets)のための理論から着想を得た。
論文 参考訳(メタデータ) (2023-10-04T09:39:05Z) - Neural Gradient Learning and Optimization for Oriented Point Normal
Estimation [53.611206368815125]
本研究では,3次元点雲から勾配ベクトルを一貫した向きで学習し,正規推定を行うためのディープラーニング手法を提案する。
局所平面幾何に基づいて角距離場を学習し、粗勾配ベクトルを洗練する。
本手法は,局所特徴記述の精度と能力の一般化を図りながら,グローバル勾配近似を効率的に行う。
論文 参考訳(メタデータ) (2023-09-17T08:35:11Z) - Ordering for Non-Replacement SGD [7.11967773739707]
我々は,アルゴリズムの非置換形式に対する収束率を改善する順序付けを求める。
我々は,強い凸関数と凸関数のステップサイズを一定かつ小さくするための最適順序付けを開発する。
さらに、注文とミニバッチを組み合わせることで、より複雑なニューラルネットワークにも適用できます。
論文 参考訳(メタデータ) (2023-06-28T00:46:58Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
等式制約付き非線形非IBS最適化問題に対する適応的不正確なニュートン法を開発した。
ベンチマーク非線形問題,LVMのデータによる制約付きロジスティック回帰,PDE制約問題において,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-28T06:33:37Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
本稿では,大規模ニューラルネットワーク学習のための最適化に基づくメタラーニング手法を提案する。
メタテスト時間における勾配再スケーリングは、非常に高品質なニューラルネットワークの学習を可能にすることを示す。
我々のフレームワークは、モデルに依存しない、直感的で、実装が容易であり、幅広い信号に対する大幅な再構成改善を示す。
論文 参考訳(メタデータ) (2023-02-01T17:32:16Z) - GTAdam: Gradient Tracking with Adaptive Momentum for Distributed Online
Optimization [4.103281325880475]
本稿では、中央コーディネータを使わずに、局所的な計算と通信によって、オンライン最適化問題を分散的に解決することを目的とした、計算機エージェントのネットワークを扱う。
本稿では,適応運動量推定法(GTAdam)を用いた勾配追従法と,勾配の1次および2次運動量推定法を組み合わせた勾配追従法を提案する。
マルチエージェント学習によるこれらの数値実験では、GTAdamは最先端の分散最適化手法よりも優れている。
論文 参考訳(メタデータ) (2020-09-03T15:20:21Z) - Neural Non-Rigid Tracking [26.41847163649205]
我々は、新しい、エンドツーエンドの学習可能、差別化可能な非剛性トラッカーを導入する。
我々は畳み込みニューラルネットワークを用いて、密度の高い通信とその信頼性を予測する。
現状の手法と比較して,提案アルゴリズムは再構築性能の向上を示す。
論文 参考訳(メタデータ) (2020-06-23T18:00:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。