Differentially Private Federated Learning for Resource-Constrained
Internet of Things
- URL: http://arxiv.org/abs/2003.12705v1
- Date: Sat, 28 Mar 2020 04:32:54 GMT
- Title: Differentially Private Federated Learning for Resource-Constrained
Internet of Things
- Authors: Rui Hu, Yuanxiong Guo, E. Paul. Ratazzi and Yanmin Gong
- Abstract summary: Federated learning is capable of analyzing the large amount of data from a distributed set of smart devices without requiring them to upload their data to a central place.
This paper proposes a novel federated learning framework called DP-PASGD for training a machine learning model efficiently from the data stored across resource-constrained smart devices in IoT.
- Score: 24.58409432248375
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the proliferation of smart devices having built-in sensors, Internet
connectivity, and programmable computation capability in the era of Internet of
things (IoT), tremendous data is being generated at the network edge. Federated
learning is capable of analyzing the large amount of data from a distributed
set of smart devices without requiring them to upload their data to a central
place. However, the commonly-used federated learning algorithm is based on
stochastic gradient descent (SGD) and not suitable for resource-constrained IoT
environments due to its high communication resource requirement. Moreover, the
privacy of sensitive data on smart devices has become a key concern and needs
to be protected rigorously. This paper proposes a novel federated learning
framework called DP-PASGD for training a machine learning model efficiently
from the data stored across resource-constrained smart devices in IoT while
guaranteeing differential privacy. The optimal schematic design of DP-PASGD
that maximizes the learning performance while satisfying the limits on resource
cost and privacy loss is formulated as an optimization problem, and an
approximate solution method based on the convergence analysis of DP-PASGD is
developed to solve the optimization problem efficiently. Numerical results
based on real-world datasets verify the effectiveness of the proposed DP-PASGD
scheme.
Related papers
- Model Partition and Resource Allocation for Split Learning in Vehicular Edge Networks [24.85135243655983]
This paper proposes a novel U-shaped split federated learning (U-SFL) framework to address these challenges.
U-SFL is able to enhance privacy protection by keeping both raw data and labels on the vehicular user (VU) side.
To optimize communication efficiency, we introduce a semantic-aware auto-encoder (SAE) that significantly reduces the dimensionality of transmitted data.
arXiv Detail & Related papers (2024-11-11T07:59:13Z) - Optimizing Age of Information in Vehicular Edge Computing with Federated Graph Neural Network Multi-Agent Reinforcement Learning [44.17644657738893]
This paper focuses on the Age of Information (AoI) as a key metric for data freshness and explores task offloading issues for vehicles under RSU communication resource constraints.
We propose an innovative distributed federated learning framework combining Graph Neural Networks (GNN), named Federated Graph Neural Network Multi-Agent Reinforcement Learning (FGNN-MADRL) to optimize AoI across the system.
arXiv Detail & Related papers (2024-07-01T15:37:38Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Edge-assisted U-Shaped Split Federated Learning with Privacy-preserving
for Internet of Things [4.68267059122563]
We present an innovative Edge-assisted U-Shaped Split Federated Learning (EUSFL) framework, which harnesses the high-performance capabilities of edge servers.
In this framework, we leverage Federated Learning (FL) to enable data holders to collaboratively train models without sharing their data.
We also propose a novel noise mechanism called LabelDP to ensure that data features and labels can securely resist reconstruction attacks.
arXiv Detail & Related papers (2023-11-08T05:14:41Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
We propose a generative AI-empowered federated learning to address these challenges by leveraging the idea of FIlling the MIssing (FIMI) portion of local data.
Experiment results demonstrate that FIMI can save up to 50% of the device-side energy to achieve the target global test accuracy.
arXiv Detail & Related papers (2023-10-21T12:07:04Z) - REFT: Resource-Efficient Federated Training Framework for Heterogeneous
and Resource-Constrained Environments [2.117841684082203]
Federated Learning (FL) plays a critical role in distributed systems.
FL emerges as a privacy-enforcing sub-domain of machine learning.
We propose "Resource-Efficient Federated Training Framework for Heterogeneous and Resource-Constrained Environments"
arXiv Detail & Related papers (2023-08-25T20:33:30Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Federated Learning for Internet of Things: A Federated Learning
Framework for On-device Anomaly Data Detection [10.232121085973782]
We build a FedIoT platform that contains a synthesized dataset using N-BaIoT, FedDetect algorithm, and a system design for IoT devices.
In a network of realistic IoT devices (PI), we evaluate FedIoT platform and FedDetect algorithm in both model and system performance.
arXiv Detail & Related papers (2021-06-15T08:53:42Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.