Edge-assisted U-Shaped Split Federated Learning with Privacy-preserving
for Internet of Things
- URL: http://arxiv.org/abs/2311.04944v1
- Date: Wed, 8 Nov 2023 05:14:41 GMT
- Title: Edge-assisted U-Shaped Split Federated Learning with Privacy-preserving
for Internet of Things
- Authors: Hengliang Tang, Zihang Zhao, Detian Liu, Yang Cao, Shiqiang Zhang,
Siqing You
- Abstract summary: We present an innovative Edge-assisted U-Shaped Split Federated Learning (EUSFL) framework, which harnesses the high-performance capabilities of edge servers.
In this framework, we leverage Federated Learning (FL) to enable data holders to collaboratively train models without sharing their data.
We also propose a novel noise mechanism called LabelDP to ensure that data features and labels can securely resist reconstruction attacks.
- Score: 4.68267059122563
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of the Internet of Things (IoT), deploying deep learning models
to process data generated or collected by IoT devices is a critical challenge.
However, direct data transmission can cause network congestion and inefficient
execution, given that IoT devices typically lack computation and communication
capabilities. Centralized data processing in data centers is also no longer
feasible due to concerns over data privacy and security. To address these
challenges, we present an innovative Edge-assisted U-Shaped Split Federated
Learning (EUSFL) framework, which harnesses the high-performance capabilities
of edge servers to assist IoT devices in model training and optimization
process. In this framework, we leverage Federated Learning (FL) to enable data
holders to collaboratively train models without sharing their data, thereby
enhancing data privacy protection by transmitting only model parameters.
Additionally, inspired by Split Learning (SL), we split the neural network into
three parts using U-shaped splitting for local training on IoT devices. By
exploiting the greater computation capability of edge servers, our framework
effectively reduces overall training time and allows IoT devices with varying
capabilities to perform training tasks efficiently. Furthermore, we proposed a
novel noise mechanism called LabelDP to ensure that data features and labels
can securely resist reconstruction attacks, eliminating the risk of privacy
leakage. Our theoretical analysis and experimental results demonstrate that
EUSFL can be integrated with various aggregation algorithms, maintaining good
performance across different computing capabilities of IoT devices, and
significantly reducing training time and local computation overhead.
Related papers
- FedSR: A Semi-Decentralized Federated Learning Algorithm for Non-IIDness in IoT System [2.040586739710704]
In the Industrial Internet of Things (IoT), a large amount of data will be generated every day.
Due to privacy and security issues, it is difficult to collect all these data together to train deep learning models.
In this paper, we combine centralized federated learning with decentralized federated learning to design a semi-decentralized cloud-edge-device hierarchical federated learning framework.
arXiv Detail & Related papers (2024-03-19T09:34:01Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Deep Reinforcement Learning Assisted Federated Learning Algorithm for
Data Management of IIoT [82.33080550378068]
The continuous expanded scale of the industrial Internet of Things (IIoT) leads to IIoT equipments generating massive amounts of user data every moment.
How to manage these time series data in an efficient and safe way in the field of IIoT is still an open issue.
This paper studies the FL technology applications to manage IIoT equipment data in wireless network environments.
arXiv Detail & Related papers (2022-02-03T07:12:36Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - Spatio-Temporal Federated Learning for Massive Wireless Edge Networks [23.389249751372393]
An edge server and numerous mobile devices (clients) jointly learn a global model without transporting huge amount of data collected by the mobile devices to the edge server.
The proposed FL approach exploits spatial and temporal correlations between learning updates from different mobile devices scheduled to join STFL in various trainings.
An analytical framework of STFL is proposed and employed to study the learning capability of STFL via its convergence performance.
arXiv Detail & Related papers (2021-10-27T16:46:45Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study an edge intelligence-based IoT network in which a set of edge servers learn a shared model using federated learning (FL)
We propose a novel framework, called federated edge intelligence (FEI), that allows edge servers to evaluate the required number of data samples according to the energy cost of the IoT network.
We prove that our proposed algorithm does not cause any data leakage nor disclose any topological information of the IoT network.
arXiv Detail & Related papers (2020-11-25T12:51:59Z) - Federated Learning in Mobile Edge Computing: An Edge-Learning
Perspective for Beyond 5G [24.275726025778482]
A novel edge computing-assisted federated learning framework is proposed in this paper.
The communication constraints between IoT devices and edge servers are taken into account.
Various IoT devices have different training datasets which have varying influence on the accuracy of the global model derived at the edge server.
arXiv Detail & Related papers (2020-07-15T22:58:47Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
Internet of Things (IoT) devices may not be able to transmit their collected data to a central controller for training machine learning models.
Google's seminal FL algorithm requires all devices to be directly connected with a central controller.
This paper introduces a novel FL framework, called collaborative FL (CFL), which enables edge devices to implement FL with less reliance on a central controller.
arXiv Detail & Related papers (2020-06-03T20:00:02Z) - Differentially Private Federated Learning for Resource-Constrained
Internet of Things [24.58409432248375]
Federated learning is capable of analyzing the large amount of data from a distributed set of smart devices without requiring them to upload their data to a central place.
This paper proposes a novel federated learning framework called DP-PASGD for training a machine learning model efficiently from the data stored across resource-constrained smart devices in IoT.
arXiv Detail & Related papers (2020-03-28T04:32:54Z) - Ternary Compression for Communication-Efficient Federated Learning [17.97683428517896]
Federated learning provides a potential solution to privacy-preserving and secure machine learning.
We propose a ternary federated averaging protocol (T-FedAvg) to reduce the upstream and downstream communication of federated learning systems.
Our results show that the proposed T-FedAvg is effective in reducing communication costs and can even achieve slightly better performance on non-IID data.
arXiv Detail & Related papers (2020-03-07T11:55:34Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.