論文の概要: Coping With Simulators That Don't Always Return
- arxiv url: http://arxiv.org/abs/2003.12908v1
- Date: Sat, 28 Mar 2020 23:05:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-18 23:38:59.600194
- Title: Coping With Simulators That Don't Always Return
- Title(参考訳): 常に戻らないシミュレーターとのコピング
- Authors: Andrew Warrington, Saeid Naderiparizi, Frank Wood
- Abstract要約: 特定の入力に対して返却できない決定論的シミュレータにプロセスノイズを加えることで生じる非効率性について検討する。
本研究では,シミュレータが高い確率で成功するような摂動を提案するために,条件付き正規化フローのトレーニング方法を示す。
- 参考スコア(独自算出の注目度): 15.980496707498535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deterministic models are approximations of reality that are easy to interpret
and often easier to build than stochastic alternatives. Unfortunately, as
nature is capricious, observational data can never be fully explained by
deterministic models in practice. Observation and process noise need to be
added to adapt deterministic models to behave stochastically, such that they
are capable of explaining and extrapolating from noisy data. We investigate and
address computational inefficiencies that arise from adding process noise to
deterministic simulators that fail to return for certain inputs; a property we
describe as "brittle." We show how to train a conditional normalizing flow to
propose perturbations such that the simulator succeeds with high probability,
increasing computational efficiency.
- Abstract(参考訳): 決定論的モデルは、解釈が容易で、しばしば確率的な代替物よりも構築が容易な現実の近似である。
残念なことに、自然は静けさであるため、観察データは実際には決定論的モデルによって完全に説明できない。
観測とプロセスノイズは、確率的に振る舞うように決定論的モデルを適用するために追加され、ノイズデータから説明や外挿ができる。
我々は、特定の入力に対して返却しない決定論的シミュレータにプロセスノイズを加えることによって生じる計算効率の非効率性を調査し、対処する。
本稿では,条件付き正規化フローを訓練する方法を示し,シミュレータが高い確率で成功し,計算効率が向上するような摂動を提案する。
関連論文リスト
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
凸最適化問題を解くための新しい勾配のないアルゴリズムを提案する。
このような問題は医学、物理学、機械学習で発生する。
両種類の雑音下で提案アルゴリズムの収束保証を行う。
論文 参考訳(メタデータ) (2024-11-21T10:26:17Z) - Differentiable Calibration of Inexact Stochastic Simulation Models via Kernel Score Minimization [11.955062839855334]
そこで本研究では,勾配降下によるカーネルスコア最小化による出力レベルデータを用いて,シミュレーションモデルの異なる入力パラメータを学習する。
モデル不正確性を考慮した新しい正規化結果を用いて,学習した入力パラメータの不確かさを定量化する。
論文 参考訳(メタデータ) (2024-11-08T04:13:52Z) - Neural Likelihood Approximation for Integer Valued Time Series Data [0.0]
我々は、基礎となるモデルの無条件シミュレーションを用いて訓練できるニューラルな可能性近似を構築した。
本手法は,多くの生態学的および疫学的モデルを用いて推定を行うことにより実証する。
論文 参考訳(メタデータ) (2023-10-19T07:51:39Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
拡散モデルを用いて予測を行い,カオス力学系に対する不確かさの定量化が可能であることを示す。
本研究では,雑音レベルが低下するにつれて真の分布に収束する条件付きスコア関数の確率的近似法を開発する。
推論時に非線形ユーザ定義イベントを条件付きでサンプリングすることができ、分布の尾部からサンプリングした場合でもデータ統計と一致させることができる。
論文 参考訳(メタデータ) (2023-06-13T03:42:03Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - Learning Summary Statistics for Bayesian Inference with Autoencoders [58.720142291102135]
我々は,ディープニューラルネットワークに基づくオートエンコーダの内部次元を要約統計として利用する。
パラメータ関連情報を全て符号化するエンコーダのインセンティブを作成するため,トレーニングデータの生成に使用した暗黙的情報にデコーダがアクセスできるようにする。
論文 参考訳(メタデータ) (2022-01-28T12:00:31Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
本研究では、状態空間モデルにおいて、観測をシミュレートすることしかできず、遷移ダイナミクスが不明な潜在状態の推測と予測を行う手法を提案する。
本研究では,限られた数のシミュレーションで状態予測と状態予測を行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T12:33:42Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z) - Continuous Optimization Benchmarks by Simulation [0.0]
最適化アルゴリズムのテスト、比較、チューニング、理解にはベンチマーク実験が必要である。
以前の評価から得られたデータは、ベンチマークに使用される代理モデルのトレーニングに使用することができる。
本研究では,スペクトルシミュレーションにより連続最適化問題のシミュレーションが可能であることを示す。
論文 参考訳(メタデータ) (2020-08-14T08:50:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。