論文の概要: Learning Summary Statistics for Bayesian Inference with Autoencoders
- arxiv url: http://arxiv.org/abs/2201.12059v1
- Date: Fri, 28 Jan 2022 12:00:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-31 21:32:44.285470
- Title: Learning Summary Statistics for Bayesian Inference with Autoencoders
- Title(参考訳): 自動エンコーダを用いたベイズ推論のための学習概要統計
- Authors: Carlo Albert, Simone Ulzega, Firat Ozdemir, Fernando Perez-Cruz,
Antonietta Mira
- Abstract要約: 我々は,ディープニューラルネットワークに基づくオートエンコーダの内部次元を要約統計として利用する。
パラメータ関連情報を全て符号化するエンコーダのインセンティブを作成するため,トレーニングデータの生成に使用した暗黙的情報にデコーダがアクセスできるようにする。
- 参考スコア(独自算出の注目度): 58.720142291102135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For stochastic models with intractable likelihood functions, approximate
Bayesian computation offers a way of approximating the true posterior through
repeated comparisons of observations with simulated model outputs in terms of a
small set of summary statistics. These statistics need to retain the
information that is relevant for constraining the parameters but cancel out the
noise. They can thus be seen as thermodynamic state variables, for general
stochastic models. For many scientific applications, we need strictly more
summary statistics than model parameters to reach a satisfactory approximation
of the posterior. Therefore, we propose to use the inner dimension of deep
neural network based Autoencoders as summary statistics. To create an incentive
for the encoder to encode all the parameter-related information but not the
noise, we give the decoder access to explicit or implicit information on the
noise that has been used to generate the training data. We validate the
approach empirically on two types of stochastic models.
- Abstract(参考訳): 難解な確率関数を持つ確率モデルに対して、近似ベイズ計算は、シミュレーションされたモデル出力と観測の繰り返し比較を通じて、小さな要約統計量の組で真の後部を近似する方法を提供する。
これらの統計は、パラメータを制約するがノイズをキャンセルするための情報を保持する必要がある。
したがって、一般の確率モデルでは熱力学的状態変数と見なすことができる。
多くの科学的応用において、後部の十分な近似に到達するためにはモデルパラメータよりも厳密な要約統計が必要である。
そこで我々は,ディープニューラルネットワークに基づくオートエンコーダの内部次元を要約統計として利用する。
パラメータ関連情報を全て符号化するエンコーダのインセンティブを作成するため、トレーニングデータを生成するために使用したノイズに関する明示的または暗黙的な情報にデコーダがアクセスする。
このアプローチを2種類の確率モデルで実証的に検証する。
関連論文リスト
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
凸最適化問題を解くための新しい勾配のないアルゴリズムを提案する。
このような問題は医学、物理学、機械学習で発生する。
両種類の雑音下で提案アルゴリズムの収束保証を行う。
論文 参考訳(メタデータ) (2024-11-21T10:26:17Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Neural Spline Search for Quantile Probabilistic Modeling [35.914279831992964]
パラメトリックな仮定を伴わない観測データ分布を表現するために,非パラメトリックかつデータ駆動型手法であるニューラルスプラインサーチ(NSS)を提案する。
我々は,NASが,合成,実世界の回帰,時系列予測タスクにおいて,従来の手法よりも優れていたことを実証した。
論文 参考訳(メタデータ) (2023-01-12T07:45:28Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Neural Approximate Sufficient Statistics for Implicit Models [34.44047460667847]
我々は、深層ニューラルネットワークの助けを借りて、データの表現を最大化する相互情報の学習として、十分な統計情報を構築するタスクの枠組みを定めている。
従来のベイズ近似計算と最近のニューラル・サイエンス法の両方にアプローチを適用し,様々なタスクにおける性能を向上する。
論文 参考訳(メタデータ) (2020-10-20T07:11:40Z) - Generalized Multi-Output Gaussian Process Censored Regression [7.111443975103331]
本稿では、GPの非パラメトリックな柔軟性と、入力依存ノイズ条件下での相関出力からの情報を活用する能力を組み合わせたヘテロスセダスティック多出力ガウスプロセスモデルを提案する。
結果として、柔軟性を追加することで、潜在的に複雑な検閲ダイナミクスの下で、モデルが基盤となる非検閲プロセス(すなわち、真)をより正確に見積もることができるかが示される。
論文 参考訳(メタデータ) (2020-09-10T12:46:29Z) - BayesFlow: Learning complex stochastic models with invertible neural
networks [3.1498833540989413]
可逆ニューラルネットワークに基づく世界規模のベイズ推定手法を提案する。
BayesFlowは、観測されたデータを最大情報的な要約統計に埋め込むよう訓練された要約ネットワークを組み込んでいる。
本研究では, 人口動態, 疫学, 認知科学, 生態学の難易度モデルに対するベイズフローの有用性を実証する。
論文 参考訳(メタデータ) (2020-03-13T13:39:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。