ML4Chem: A Machine Learning Package for Chemistry and Materials Science
- URL: http://arxiv.org/abs/2003.13388v1
- Date: Mon, 2 Mar 2020 00:28:19 GMT
- Title: ML4Chem: A Machine Learning Package for Chemistry and Materials Science
- Authors: Muammar El Khatib, Wibe A de Jong
- Abstract summary: ML4Chem is an open-source machine learning library for chemistry and materials science.
It provides an extendable platform to develop and deploy machine learning models and pipelines.
Here we introduce its atomistic module for the implementation, deployment, and inference.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: ML4Chem is an open-source machine learning library for chemistry and
materials science. It provides an extendable platform to develop and deploy
machine learning models and pipelines and is targeted to the non-expert and
expert users. ML4Chem follows user-experience design and offers the needed
tools to go from data preparation to inference. Here we introduce its atomistic
module for the implementation, deployment, and reproducibility of atom-centered
models. This module is composed of six core building blocks: data,
featurization, models, model optimization, inference, and visualization. We
present their functionality and easiness of use with demonstrations utilizing
neural networks and kernel ridge regression algorithms.
Related papers
- Deep Fast Machine Learning Utils: A Python Library for Streamlined Machine Learning Prototyping [0.0]
The Deep Fast Machine Learning Utils (DFMLU) library provides tools designed to automate and enhance aspects of machine learning processes.
DFMLU offers functionalities that support model development and data handling.
This manuscript presents an overview of DFMLU's functionalities, providing Python examples for each tool.
arXiv Detail & Related papers (2024-09-14T21:39:17Z) - MLatom 3: Platform for machine learning-enhanced computational chemistry
simulations and workflows [12.337972297411003]
Machine learning (ML) is increasingly becoming a common tool in computational chemistry.
MLatom 3 is a program package designed to leverage the power of ML to enhance typical computational chemistry simulations.
The users can choose from an extensive library of methods containing pre-trained ML models and quantum mechanical approximations.
arXiv Detail & Related papers (2023-10-31T03:41:39Z) - CodeTF: One-stop Transformer Library for State-of-the-art Code LLM [72.1638273937025]
We present CodeTF, an open-source Transformer-based library for state-of-the-art Code LLMs and code intelligence.
Our library supports a collection of pretrained Code LLM models and popular code benchmarks.
We hope CodeTF is able to bridge the gap between machine learning/generative AI and software engineering.
arXiv Detail & Related papers (2023-05-31T05:24:48Z) - CodeGen2: Lessons for Training LLMs on Programming and Natural Languages [116.74407069443895]
We unify encoder and decoder-based models into a single prefix-LM.
For learning methods, we explore the claim of a "free lunch" hypothesis.
For data distributions, the effect of a mixture distribution and multi-epoch training of programming and natural languages on model performance is explored.
arXiv Detail & Related papers (2023-05-03T17:55:25Z) - Synthetic data enable experiments in atomistic machine learning [0.0]
We demonstrate the use of a large dataset labelled with per-atom energies from an existing ML potential model.
The cheapness of this process, compared to the quantum-mechanical ground truth, allows us to generate millions of datapoints.
We show that learning synthetic data labels can be a useful pre-training task for subsequent fine-tuning on small datasets.
arXiv Detail & Related papers (2022-11-29T18:17:24Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - OmniXAI: A Library for Explainable AI [98.07381528393245]
We introduce OmniXAI, an open-source Python library of eXplainable AI (XAI)
It offers omni-way explainable AI capabilities and various interpretable machine learning techniques.
For practitioners, the library provides an easy-to-use unified interface to generate the explanations for their applications.
arXiv Detail & Related papers (2022-06-01T11:35:37Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - AugLiChem: Data Augmentation Library of Chemical Structures for Machine
Learning [12.864696894234715]
AugLiChem is the data augmentation library for chemical structures.
Augmentation methods for both crystalline systems and molecules are introduced.
We show that using our augmentation strategies significantly improves the performance of ML models.
arXiv Detail & Related papers (2021-11-30T04:07:24Z) - MLMOD: Machine Learning Methods for Data-Driven Modeling in LAMMPS [0.0]
We present a prototype C++/Python package for characterizing microscale mechanics and molecular dynamics.
The package is integrated currently with the mesomod and molecular dynamics simulation package LAMMPS and PyTorch.
arXiv Detail & Related papers (2021-07-29T22:55:26Z) - Advanced Graph and Sequence Neural Networks for Molecular Property
Prediction and Drug Discovery [53.00288162642151]
We develop MoleculeKit, a suite of comprehensive machine learning tools spanning different computational models and molecular representations.
Built on these representations, MoleculeKit includes both deep learning and traditional machine learning methods for graph and sequence data.
Results on both online and offline antibiotics discovery and molecular property prediction tasks show that MoleculeKit achieves consistent improvements over prior methods.
arXiv Detail & Related papers (2020-12-02T02:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.