Advanced Graph and Sequence Neural Networks for Molecular Property
Prediction and Drug Discovery
- URL: http://arxiv.org/abs/2012.01981v2
- Date: Mon, 11 Jan 2021 20:45:07 GMT
- Title: Advanced Graph and Sequence Neural Networks for Molecular Property
Prediction and Drug Discovery
- Authors: Zhengyang Wang, Meng Liu, Youzhi Luo, Zhao Xu, Yaochen Xie, Limei
Wang, Lei Cai, Shuiwang Ji
- Abstract summary: We develop MoleculeKit, a suite of comprehensive machine learning tools spanning different computational models and molecular representations.
Built on these representations, MoleculeKit includes both deep learning and traditional machine learning methods for graph and sequence data.
Results on both online and offline antibiotics discovery and molecular property prediction tasks show that MoleculeKit achieves consistent improvements over prior methods.
- Score: 53.00288162642151
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Properties of molecules are indicative of their functions and thus are useful
in many applications. As a cost-effective alternative to experimental
approaches, computational methods for predicting molecular properties are
gaining increasing momentum and success. However, there lacks a comprehensive
collection of tools and methods for this task currently. Here we develop the
MoleculeKit, a suite of comprehensive machine learning tools spanning different
computational models and molecular representations for molecular property
prediction and drug discovery. Specifically, MoleculeKit represents molecules
as both graphs and sequences. Built on these representations, MoleculeKit
includes both deep learning and traditional machine learning methods for graph
and sequence data. Noticeably, we propose and develop novel deep models for
learning from molecular graphs and sequences. Therefore, MoleculeKit not only
serves as a comprehensive tool, but also contributes towards developing novel
and advanced graph and sequence learning methodologies. Results on both online
and offline antibiotics discovery and molecular property prediction tasks show
that MoleculeKit achieves consistent improvements over prior methods.
Related papers
- Multi-Modal Representation Learning for Molecular Property Prediction:
Sequence, Graph, Geometry [6.049566024728809]
Deep learning-based molecular property prediction has emerged as a solution to the resource-intensive nature of traditional methods.
In this paper, we propose a novel multi-modal representation learning model, called SGGRL, for molecular property prediction.
To ensure consistency across modalities, SGGRL is trained to maximize the similarity of representations for the same molecule while minimizing similarity for different molecules.
arXiv Detail & Related papers (2024-01-07T02:18:00Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIG is a novel MultiModaL molecular pre-training framework for predicting molecular properties based on Image and Graph structures.
It amalgamates the strengths of both molecular representation forms.
It exhibits enhanced performance in downstream tasks pertaining to molecular property prediction within benchmark groups.
arXiv Detail & Related papers (2023-11-28T10:28:35Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - Supervised Pretraining for Molecular Force Fields and Properties
Prediction [16.86839767858162]
We propose to pretrain neural networks on a dataset of 86 millions of molecules with atom charges and 3D geometries as inputs and molecular energies as labels.
Experiments show that, compared to training from scratch, fine-tuning the pretrained model can significantly improve the performance for seven molecular property prediction tasks and two force field tasks.
arXiv Detail & Related papers (2022-11-23T08:36:50Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z) - Graph-based Molecular Representation Learning [59.06193431883431]
Molecular representation learning (MRL) is a key step to build the connection between machine learning and chemical science.
Recently, MRL has achieved considerable progress, especially in methods based on deep molecular graph learning.
arXiv Detail & Related papers (2022-07-08T17:43:20Z) - MolCLR: Molecular Contrastive Learning of Representations via Graph
Neural Networks [11.994553575596228]
MolCLR is a self-supervised learning framework for large unlabeled molecule datasets.
We propose three novel molecule graph augmentations: atom masking, bond deletion, and subgraph removal.
Our method achieves state-of-the-art performance on many challenging datasets.
arXiv Detail & Related papers (2021-02-19T17:35:18Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
We propose Meta-MGNN, a novel model for few-shot molecular property prediction.
To exploit unlabeled molecular information, Meta-MGNN further incorporates molecular structure, attribute based self-supervised modules and self-attentive task weights.
Extensive experiments on two public multi-property datasets demonstrate that Meta-MGNN outperforms a variety of state-of-the-art methods.
arXiv Detail & Related papers (2021-02-16T01:55:34Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
We propose a novel framework, GROVER, for molecular representation learning.
GROVER can learn rich structural and semantic information of molecules from enormous unlabelled molecular data.
We pre-train GROVER with 100 million parameters on 10 million unlabelled molecules -- the biggest GNN and the largest training dataset in molecular representation learning.
arXiv Detail & Related papers (2020-06-18T08:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.