論文の概要: Difference Attention Based Error Correction LSTM Model for Time Series
Prediction
- arxiv url: http://arxiv.org/abs/2003.13616v1
- Date: Mon, 30 Mar 2020 16:48:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-18 06:49:53.939613
- Title: Difference Attention Based Error Correction LSTM Model for Time Series
Prediction
- Title(参考訳): 時系列予測のための差分注意に基づく誤差補正LSTMモデル
- Authors: Yuxuan Liu, Jiangyong Duan and Juan Meng
- Abstract要約: 本稿では,差分注意型LSTMモデルと誤り訂正型LSTMモデルをそれぞれカスケード方式で組み合わせた時系列予測モデルを提案する。
新たな特徴と新たな原則学習フレームワークにより,時系列の予測精度を向上させることができる。
- 参考スコア(独自算出の注目度): 3.7990471017645855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel model for time series prediction in which
difference-attention LSTM model and error-correction LSTM model are
respectively employed and combined in a cascade way. While difference-attention
LSTM model introduces a difference feature to perform attention in traditional
LSTM to focus on the obvious changes in time series. Error-correction LSTM
model refines the prediction error of difference-attention LSTM model to
further improve the prediction accuracy. Finally, we design a training strategy
to jointly train the both models simultaneously. With additional difference
features and new principle learning framework, our model can improve the
prediction accuracy in time series. Experiments on various time series are
conducted to demonstrate the effectiveness of our method.
- Abstract(参考訳): 本稿では,差分注意型LSTMモデルと誤り補正型LSTMモデルをそれぞれカスケード方式で組み合わせた時系列予測モデルを提案する。
差分注意型LSTMモデルは、従来のLSTMにおいて、時系列における明らかな変化に焦点を合わせるために、差分特徴を導入する。
誤差補正LSTMモデルは、差分注意LSTMモデルの予測誤差を洗練し、予測精度をさらに向上させる。
最後に,両モデルを同時に訓練するためのトレーニング戦略を設計する。
新たな特徴と新たな原則学習フレームワークにより,時系列の予測精度を向上させることができる。
本手法の有効性を示すため,様々な時系列実験を行った。
関連論文リスト
- Recursive Learning of Asymptotic Variational Objectives [49.69399307452126]
一般状態空間モデル(英: General State-space Model, SSM)は、統計機械学習において広く用いられ、時系列データに対して最も古典的な生成モデルの一つである。
オンラインシーケンシャルIWAE(OSIWAE)は、潜在状態の推測のためのモデルパラメータとマルコフ認識モデルの両方のオンライン学習を可能にする。
このアプローチは、最近提案されたオンライン変分SMC法よりも理論的によく確立されている。
論文 参考訳(メタデータ) (2024-11-04T16:12:37Z) - xLSTM-Mixer: Multivariate Time Series Forecasting by Mixing via Scalar Memories [20.773694998061707]
時系列データは様々な分野に分散しており、堅牢で正確な予測モデルの開発が必要である。
我々は,時間的シーケンス,共同時間可変情報,堅牢な予測のための複数の視点を効果的に統合するモデルであるxLSTM-Mixerを紹介する。
我々は,最近の最先端手法と比較して,xLSTM-Mixerの長期予測性能が優れていることを示した。
論文 参考訳(メタデータ) (2024-10-22T11:59:36Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
Elect, Mask & Rescale-Merging (EMR-Merging) は既存のマージ手法と比較して優れた性能を示した。
EMR-Mergingはチューニング不要なので、データアベイラビリティや追加のトレーニングは必要ありません。
論文 参考訳(メタデータ) (2024-05-23T05:25:45Z) - Low-Rank Adaptation of Time Series Foundational Models for Out-of-Domain Modality Forecasting [5.354055742467354]
Low-Rank Adaptation (LoRA) は、様々なモダリティやタスクにまたがる大規模または基礎的なモデルを微調整する手法である。
本稿では,Lug-Llama,MOIRAI,Chronosといった現代時系列基盤モデルに対するLoRAの影響について検討する。
論文 参考訳(メタデータ) (2024-05-16T16:05:33Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
本稿では,Long Short-Term Memory Networkに埋め込まれた特徴選択手法を提案する。
本手法はLSTMの重みと偏りを分割的に最適化する。
イタリアとスペイン南東部の大気質時系列データの実験的評価により,従来のLSTMの能力一般化が著しく向上することが確認された。
論文 参考訳(メタデータ) (2023-12-29T08:42:10Z) - An Attention Free Long Short-Term Memory for Time Series Forecasting [0.0]
本研究では,より効率的なフレームワークであるアテンションフリー機構を用いた時系列予測に着目し,時系列予測のための新しいアーキテクチャを提案する。
本研究では,無注意LSTM層を用いて,条件分散予測のための線形モデルを克服するアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-09-20T08:23:49Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
自己教師付き学習(SSL)と自己エンコーダベースモデル(AE)の相互関係が相互関係に与える影響を示す。
本研究では, 線形ヘッドの潜在バイアスから事前学習したモデルの性能を分離するために, アウト・オブ・ディストリビューション(OOD)データに基づいて訓練された線形ヘッドを用いた新しい評価手法を開発した。
論文 参考訳(メタデータ) (2022-06-17T16:18:28Z) - The DONUT Approach to EnsembleCombination Forecasting [0.0]
本稿では,M4Competitionデータセット上で強力な結果を示すアンサンブル予測手法を提案する。
提案手法は,主に自動生成機能と,より多様なモデルプールで構成され,統計的特徴に基づくアンサンブル法であるFFORMAよりも優れていた。
また,M4データセット上での線形最適化による差分を定量化するために,アンサンブルの最適組み合わせと選択に関する公式なポストファクト解析を行った。
論文 参考訳(メタデータ) (2022-01-02T22:19:26Z) - Model-Attentive Ensemble Learning for Sequence Modeling [86.4785354333566]
シーケンスモデリング(MAES)のためのモデル・アテンティブ・アンサンブル・ラーニングを提案する。
MAESは、異なるシーケンスダイナミクスの専門家を専門とし、予測を適応的に重み付けるために、注目ベースのゲーティングメカニズムを利用する時系列の専門家の混合物です。
MAESが時系列シフトを受けるデータセットの人気シーケンスモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2021-02-23T05:23:35Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Compressing LSTM Networks by Matrix Product Operators [7.395226141345625]
Long Short Term Memory(LSTM)モデルは、多くの最先端自然言語処理(NLP)と音声強調(SE)アルゴリズムの構築ブロックである。
ここでは、量子多体物理学における量子状態の局所的相関を記述するMPO分解を紹介する。
LSTMモデルを置き換えるために,行列積演算子(MPO)に基づくニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-12-22T11:50:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。