Supervised and Unsupervised Detections for Multiple Object Tracking in
Traffic Scenes: A Comparative Study
- URL: http://arxiv.org/abs/2003.13644v1
- Date: Mon, 30 Mar 2020 17:27:04 GMT
- Title: Supervised and Unsupervised Detections for Multiple Object Tracking in
Traffic Scenes: A Comparative Study
- Authors: Hui-Lee Ooi, Guillaume-Alexandre Bilodeau, and Nicolas Saunier
- Abstract summary: We propose a multiple object tracker, called MF-Tracker, that integrates multiple classical features (spatial and colours) and modern features (detection labels and re-identification features) in its tracking framework.
Since our tracker can work with detections coming either from unsupervised and supervised object detectors, we also investigated the impact of supervised and unsupervised detection inputs in our method.
Results show that our proposed method is performing very well in both datasets with different inputs.
- Score: 11.024591739346294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a multiple object tracker, called MF-Tracker, that
integrates multiple classical features (spatial distances and colours) and
modern features (detection labels and re-identification features) in its
tracking framework. Since our tracker can work with detections coming either
from unsupervised and supervised object detectors, we also investigated the
impact of supervised and unsupervised detection inputs in our method and for
tracking road users in general. We also compared our results with existing
methods that were applied on the UA-Detrac and the UrbanTracker datasets.
Results show that our proposed method is performing very well in both datasets
with different inputs (MOTA ranging from 0:3491 to 0:5805 for unsupervised
inputs on the UrbanTracker dataset and an average MOTA of 0:7638 for supervised
inputs on the UA Detrac dataset) under different circumstances. A well-trained
supervised object detector can give better results in challenging scenarios.
However, in simpler scenarios, if good training data is not available,
unsupervised method can perform well and can be a good alternative.
Related papers
- SeMoLi: What Moves Together Belongs Together [51.72754014130369]
We tackle semi-supervised object detection based on motion cues.
Recent results suggest that motion-based clustering methods can be used to pseudo-label instances of moving objects.
We re-think this approach and suggest that both, object detection, as well as motion-inspired pseudo-labeling, can be tackled in a data-driven manner.
arXiv Detail & Related papers (2024-02-29T18:54:53Z) - You Only Need Two Detectors to Achieve Multi-Modal 3D Multi-Object Tracking [9.20064374262956]
The proposed framework can achieve robust tracking by using only a 2D detector and a 3D detector.
It is proven more accurate than many of the state-of-the-art TBD-based multi-modal tracking methods.
arXiv Detail & Related papers (2023-04-18T02:45:18Z) - OmniTracker: Unifying Object Tracking by Tracking-with-Detection [119.51012668709502]
OmniTracker is presented to resolve all the tracking tasks with a fully shared network architecture, model weights, and inference pipeline.
Experiments on 7 tracking datasets, including LaSOT, TrackingNet, DAVIS16-17, MOT17, MOTS20, and YTVIS19, demonstrate that OmniTracker achieves on-par or even better results than both task-specific and unified tracking models.
arXiv Detail & Related papers (2023-03-21T17:59:57Z) - End-to-end Tracking with a Multi-query Transformer [96.13468602635082]
Multiple-object tracking (MOT) is a challenging task that requires simultaneous reasoning about location, appearance, and identity of the objects in the scene over time.
Our aim in this paper is to move beyond tracking-by-detection approaches, to class-agnostic tracking that performs well also for unknown object classes.
arXiv Detail & Related papers (2022-10-26T10:19:37Z) - SOMPT22: A Surveillance Oriented Multi-Pedestrian Tracking Dataset [5.962184741057505]
We introduce SOMPT22 dataset; a new set for multi person tracking with annotated short videos captured from static cameras located on poles with 6-8 meters in height positioned for city surveillance.
We analyze MOT trackers classified as one-shot and two-stage with respect to the way of use of detection and reID networks on this new dataset.
The experimental results of our new dataset indicate that SOTA is still far from high efficiency, and single-shot trackers are good candidates to unify fast execution and accuracy with competitive performance.
arXiv Detail & Related papers (2022-08-04T11:09:19Z) - Online Deep Clustering with Video Track Consistency [85.8868194550978]
We propose an unsupervised clustering-based approach to learn visual features from video object tracks.
We show that exploiting an unsupervised class-agnostic, yet noisy, track generator yields to better accuracy compared to relying on costly and precise track annotations.
arXiv Detail & Related papers (2022-06-07T08:11:00Z) - Unified Transformer Tracker for Object Tracking [58.65901124158068]
We present the Unified Transformer Tracker (UTT) to address tracking problems in different scenarios with one paradigm.
A track transformer is developed in our UTT to track the target in both Single Object Tracking (SOT) and Multiple Object Tracking (MOT)
arXiv Detail & Related papers (2022-03-29T01:38:49Z) - Track to Detect and Segment: An Online Multi-Object Tracker [81.15608245513208]
TraDeS is an online joint detection and tracking model, exploiting tracking clues to assist detection end-to-end.
TraDeS infers object tracking offset by a cost volume, which is used to propagate previous object features.
arXiv Detail & Related papers (2021-03-16T02:34:06Z) - DEFT: Detection Embeddings for Tracking [3.326320568999945]
We propose an efficient joint detection and tracking model named DEFT.
Our approach relies on an appearance-based object matching network jointly-learned with an underlying object detection network.
DEFT has comparable accuracy and speed to the top methods on 2D online tracking leaderboards.
arXiv Detail & Related papers (2021-02-03T20:00:44Z) - Probabilistic 3D Multi-Modal, Multi-Object Tracking for Autonomous
Driving [22.693895321632507]
We propose a probabilistic, multi-modal, multi-object tracking system consisting of different trainable modules.
We show that our method outperforms current state-of-the-art on the NuScenes Tracking dataset.
arXiv Detail & Related papers (2020-12-26T15:00:54Z) - RetinaTrack: Online Single Stage Joint Detection and Tracking [22.351109024452462]
We focus on the tracking-by-detection paradigm for autonomous driving where both tasks are mission critical.
We propose a conceptually simple and efficient joint model of detection and tracking, called RetinaTrack, which modifies the popular single stage RetinaNet approach.
arXiv Detail & Related papers (2020-03-30T23:46:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.