論文の概要: COVID-CT-Dataset: A CT Scan Dataset about COVID-19
- arxiv url: http://arxiv.org/abs/2003.13865v3
- Date: Wed, 17 Jun 2020 20:14:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-18 06:22:25.641913
- Title: COVID-CT-Dataset: A CT Scan Dataset about COVID-19
- Title(参考訳): COVID-CTデータセット: COVID-19に関するCTスキャンデータセット
- Authors: Xingyi Yang, Xuehai He, Jinyu Zhao, Yichen Zhang, Shanghang Zhang,
Pengtao Xie
- Abstract要約: 新型コロナウイルスの流行期には、CT(Computerd tomography)は新型コロナウイルス患者の診断に有用である。
プライバシー上の問題から、公開可能なCOVID-19 CTデータセットの入手は非常に困難である。
このデータセットには、216人の患者の349のCOVID-19 CTイメージと、463の非COVID-19 CTが含まれている。
- 参考スコア(独自算出の注目度): 33.60943657492132
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: During the outbreak time of COVID-19, computed tomography (CT) is a useful
manner for diagnosing COVID-19 patients. Due to privacy issues, publicly
available COVID-19 CT datasets are highly difficult to obtain, which hinders
the research and development of AI-powered diagnosis methods of COVID-19 based
on CTs. To address this issue, we build an open-sourced dataset -- COVID-CT,
which contains 349 COVID-19 CT images from 216 patients and 463 non-COVID-19
CTs. The utility of this dataset is confirmed by a senior radiologist who has
been diagnosing and treating COVID-19 patients since the outbreak of this
pandemic. We also perform experimental studies which further demonstrate that
this dataset is useful for developing AI-based diagnosis models of COVID-19.
Using this dataset, we develop diagnosis methods based on multi-task learning
and self-supervised learning, that achieve an F1 of 0.90, an AUC of 0.98, and
an accuracy of 0.89. According to the senior radiologist, models with such
performance are good enough for clinical usage. The data and code are available
at https://github.com/UCSD-AI4H/COVID-CT
- Abstract(参考訳): 新型コロナウイルスの流行期には、CT(Computerd tomography)は新型コロナウイルス患者の診断に有用である。
プライバシー上の問題により、一般公開されているCOVID-19 CTデータセットの入手は非常に困難であり、CTに基づいたAIによる診断方法の研究と開発を妨げる。
この問題に対処するために、私たちはオープンソースのデータセットであるcovid-19-ctを構築します。
このデータセットの有用性は、新型コロナウイルス(covid-19)のパンデミック以来、患者の診断と治療を行ってきたシニア放射線科医によって確認されている。
また、このデータセットがcovid-19のaiベースの診断モデルの開発に有用であることを示す実験的研究も行っています。
本研究では,マルチタスク学習と自己教師あり学習に基づく診断法を開発し,0.90のf1,0.98のauc,0.89の精度を達成する。
上級放射線技師によると、そのような性能を持つモデルは臨床応用には十分である。
データとコードはhttps://github.com/UCSD-AI4H/COVID-CTで公開されている。
関連論文リスト
- COVIDx CXR-4: An Expanded Multi-Institutional Open-Source Benchmark
Dataset for Chest X-ray Image-Based Computer-Aided COVID-19 Diagnostics [79.90346960083775]
我々は,胸部X線画像を用いたコンピュータ支援型COVID-19診断のための,多施設のオープンソースベンチマークデータセットであるCOVIDx CXR-4を紹介する。
COVIDx CXR-4は、患者の総コホートサイズを2.66倍に増やすことで、前回のCOVIDx CXR-3データセットで大幅に拡大する。
患者人口、画像メタデータ、および疾患分布の多様性について広範な分析を行い、潜在的なデータセットバイアスを明らかにする。
論文 参考訳(メタデータ) (2023-11-29T14:40:31Z) - COVIDx CT-3: A Large-scale, Multinational, Open-Source Benchmark Dataset
for Computer-aided COVID-19 Screening from Chest CT Images [82.74877848011798]
胸部CT画像から新型コロナウイルスの症例を検出するための大規模ベンチマークデータセットであるCOVIDx CT-3を紹介する。
COVIDx CT-3には、少なくとも17カ国で6,068人の患者から431,205個のCTスライスが含まれている。
我々は, COVIDx CT-3データセットのデータ多様性と潜在的なバイアスについて検討し, 地理的, 集団的不均衡について検討した。
論文 参考訳(メタデータ) (2022-06-07T06:35:48Z) - HRCTCov19 -- A High-Resolution Chest CT Scan Image Dataset for COVID-19
Diagnosis and Differentiation [0.0]
新型コロナウイルスのパンデミックの間、CT(Computerd tomography)は新型コロナウイルスの患者を診断するための一般的な方法であった。
公開でアクセス可能な新型コロナウイルスのCT画像データセットは、プライバシー上の懸念から入手するのが困難である。
HRCTCov19は、新しい新型コロナウイルス高分解能胸部CTスキャン画像データセットである。
論文 参考訳(メタデータ) (2022-05-06T12:49:18Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
深層学習モデルは、胸部X線から新型コロナウイルスを識別するために開発された。
オープンソースデータのトレーニングやテストでは,結果は異例です。
データ分析とモデル評価は、人気のあるオープンソースデータセットであるCOVIDxが実際の臨床問題を代表していないことを示している。
論文 参考訳(メタデータ) (2021-09-14T10:59:11Z) - COVID-Rate: An Automated Framework for Segmentation of COVID-19 Lesions
from Chest CT Scans [29.266579630983358]
パンデミック時代には、専門家の放射線学者による新型コロナウイルスの肺病変の視覚的評価と定量化が高価になり、エラーが生じる傾向にある。
専門医に注釈を付された82例のCT画像433点を含むオープンアクセス型COVID-19 CTセグメンテーションデータセットについて紹介する。
Deep Neural Network(DNN)ベースのフレームワークであるCOVID-Rateは、胸部CTスキャンからCOVID-19に関連する肺の異常を自律的に分離する。
論文 参考訳(メタデータ) (2021-07-04T03:19:43Z) - Few-shot Learning for CT Scan based COVID-19 Diagnosis [33.26861533338019]
コロナウイルス感染症2019(英語: Coronavirus disease 2019, COVID-19)は、188か国と領土で4000万人以上の人々が感染している国際保健緊急事態宣言である。
深層学習アプローチは、医療画像の自動スクリーニングの有効なツールとなり、また、新型コロナウイルスの診断としても検討されている。
そこで本研究では,少量のラベル付きCTスキャンが利用可能である場合にのみ有効に機能する領域適応型COVID-19 CT診断法を提案する。
論文 参考訳(メタデータ) (2021-02-01T02:37:49Z) - COVID-Net CT-2: Enhanced Deep Neural Networks for Detection of COVID-19
from Chest CT Images Through Bigger, More Diverse Learning [70.92379567261304]
胸部CT画像からのCOVID-19検出のための深部ニューラルネットワークであるCOVID-Net CT-2を導入する。
説明力を活用して、COVID-Net CT-2の意思決定行動を調査します。
結果は有望であり、コンピュータ支援型COVID-19アセスメントの有効なツールとして、ディープニューラルネットワークの強い可能性を示唆している。
論文 参考訳(メタデータ) (2021-01-19T03:04:09Z) - Screening COVID-19 Based on CT/CXR Images & Building a Publicly
Available CT-scan Dataset of COVID-19 [6.142272540492935]
本研究は、1000人以上からなる13k以上のCT画像で構成され、新型コロナウイルスに感染した500人の患者から8kの画像を撮影する大規模なCTスキャンデータセットを構築した。
提案するCTデータセットを用いて,COVID-19をスクリーニングする深層学習モデルを提案し,その結果を報告する。
最後に、トランスファーラーニング手法を用いてCXR画像からCOVID-19をスクリーニングするCTモデルを拡張した。
論文 参考訳(メタデータ) (2020-12-28T11:52:33Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
我々は、胸部CT画像からCOVID-19の症例を検出するのに適した、深層畳み込みニューラルネットワークアーキテクチャであるCOVIDNet-CTを紹介した。
また,中国生体情報センターが収集したCT画像データから得られたベンチマークCT画像データセットであるCOVIDx-CTも紹介した。
論文 参考訳(メタデータ) (2020-09-08T15:49:55Z) - Study of Different Deep Learning Approach with Explainable AI for
Screening Patients with COVID-19 Symptoms: Using CT Scan and Chest X-ray
Image Dataset [1.4680035572775532]
新型コロナウイルスの感染拡大で、米国だけでもこれまでに10万人以上の死者が出た。
患者数の増加に伴い、利用可能なテストキットでテストを実施するのが難しくなっている。
本研究の目的は、CTスキャンと胸部X線画像データセットの両方において、より正確な精度で新型コロナウイルス患者を検出できるディープラーニングベースのモデルを開発することである。
論文 参考訳(メタデータ) (2020-07-24T13:51:58Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
胸部CT画像に基づくCOVID-19分類のための適応的特徴選択ガイド付き深層林(AFS-DF)を提案する。
AFS-DF on COVID-19 data with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)。
論文 参考訳(メタデータ) (2020-05-07T06:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。