Optimising Lockdown Policies for Epidemic Control using Reinforcement
Learning
- URL: http://arxiv.org/abs/2003.14093v2
- Date: Fri, 1 May 2020 11:28:25 GMT
- Title: Optimising Lockdown Policies for Epidemic Control using Reinforcement
Learning
- Authors: Harshad Khadilkar, Tanuja Ganu, Deva P Seetharam
- Abstract summary: We present a quantitative way to compute lockdown decisions for individual cities or regions, while balancing health and economic considerations.
These policies are learnt automatically by the proposed algorithm, as a function of disease parameters.
We account for realistic considerations such as imperfect lockdowns, and show that the policy obtained using reinforcement learning is a viable quantitative approach towards lockdowns.
- Score: 5.174900115018252
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of the ongoing Covid-19 pandemic, several reports and studies
have attempted to model and predict the spread of the disease. There is also
intense debate about policies for limiting the damage, both to health and to
the economy. On the one hand, the health and safety of the population is the
principal consideration for most countries. On the other hand, we cannot ignore
the potential for long-term economic damage caused by strict nation-wide
lockdowns. In this working paper, we present a quantitative way to compute
lockdown decisions for individual cities or regions, while balancing health and
economic considerations. Furthermore, these policies are learnt automatically
by the proposed algorithm, as a function of disease parameters (infectiousness,
gestation period, duration of symptoms, probability of death) and population
characteristics (density, movement propensity). We account for realistic
considerations such as imperfect lockdowns, and show that the policy obtained
using reinforcement learning is a viable quantitative approach towards
lockdowns.
Related papers
- SIR-RL: Reinforcement Learning for Optimized Policy Control during Epidemiological Outbreaks in Emerging Market and Developing Economies [0.0]
This study proposes a novel reinforcement learning framework designed to optimize health and economic outcomes during pandemics.
By implementing reinforcement learning, we aim to optimize governmental responses and strike a balance between the competing costs associated with public health and economic stability.
arXiv Detail & Related papers (2024-04-12T12:11:51Z) - Epidemic Control on a Large-Scale-Agent-Based Epidemiology Model using
Deep Deterministic Policy Gradient [0.7244731714427565]
lockdowns, rapid vaccination programs, school closures, and economic stimulus can have positive or unintended negative consequences.
Current research to model and determine an optimal intervention automatically through round-tripping is limited by the simulation objectives, scale (a few thousand individuals), model types that are not suited for intervention studies, and the number of intervention strategies they can explore (discrete vs continuous).
We address these challenges using a Deep Deterministic Policy Gradient (DDPG) based policy optimization framework on a large-scale (100,000 individual) epidemiological agent-based simulation.
arXiv Detail & Related papers (2023-04-10T09:26:07Z) - Evaluating COVID-19 vaccine allocation policies using Bayesian $m$-top
exploration [53.122045119395594]
We present a novel technique for evaluating vaccine allocation strategies using a multi-armed bandit framework.
$m$-top exploration allows the algorithm to learn $m$ policies for which it expects the highest utility.
We consider the Belgian COVID-19 epidemic using the individual-based model STRIDE, where we learn a set of vaccination policies.
arXiv Detail & Related papers (2023-01-30T12:22:30Z) - Estimating Geographic Spillover Effects of COVID-19 Policies From
Large-Scale Mobility Networks [54.90772000796717]
County-level policies provide flexibility between regions, but may become less effective in the presence of geographic spillovers.
We estimate spillovers using a mobility network with billions of timestamped edges.
We find that county-level restrictions are only 54% as effective as statewide restrictions at reducing mobility.
arXiv Detail & Related papers (2022-12-12T20:16:54Z) - Optimal non-pharmaceutical intervention policy for Covid-19 epidemic via
neuroevolution algorithm [0.0]
Policies aimed at disrupting the viral transmission cycle and preventing the healthcare system from being overwhelmed exact an economic toll.
We developed a intervention policy model that comprised the relative human, economic and healthcare costs of non-pharmaceutical epidemic intervention.
A proposed model finds the minimum required reduction in contact rates to maintain the burden on the healthcare system below the maximum capacity.
arXiv Detail & Related papers (2021-10-23T16:26:50Z) - Building a Foundation for Data-Driven, Interpretable, and Robust Policy
Design using the AI Economist [67.08543240320756]
We show that the AI Economist framework enables effective, flexible, and interpretable policy design using two-level reinforcement learning and data-driven simulations.
We find that log-linear policies trained using RL significantly improve social welfare, based on both public health and economic outcomes, compared to past outcomes.
arXiv Detail & Related papers (2021-08-06T01:30:41Z) - Multi-Objective Model-based Reinforcement Learning for Infectious
Disease Control [19.022696762983017]
Severe infectious diseases such as the novel coronavirus (COVID-19) pose a huge threat to public health.
Stringent control measures, such as school closures and stay-at-home orders, while having significant effects, also bring huge economic losses.
We propose a Multi-Objective Model-based Reinforcement Learning framework to facilitate data-driven decision-making and minimize the overall long-term cost.
arXiv Detail & Related papers (2020-09-09T23:55:27Z) - Data-driven Simulation and Optimization for Covid-19 Exit Strategies [16.31545249131776]
The rapid spread of the Coronavirus SARS-2 is a major challenge that led almost all governments worldwide to take drastic measures to respond to the tragedy.
We have built a pandemic simulation and forecasting toolkit that combines a deep learning estimation of the epidemiological parameters of the disease.
arXiv Detail & Related papers (2020-06-12T11:18:25Z) - COVI White Paper [67.04578448931741]
Contact tracing is an essential tool to change the course of the Covid-19 pandemic.
We present an overview of the rationale, design, ethical considerations and privacy strategy of COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.
arXiv Detail & Related papers (2020-05-18T07:40:49Z) - A Deep Q-learning/genetic Algorithms Based Novel Methodology For
Optimizing Covid-19 Pandemic Government Actions [63.669642197519934]
We use the SEIR epidemiological model to represent the evolution of the virus COVID-19 over time in the population.
The sequences of actions (confinement, self-isolation, two-meter distance or not taking restrictions) are evaluated according to a reward system.
We prove that our methodology is a valid tool to discover actions governments can take to reduce the negative effects of a pandemic in both senses.
arXiv Detail & Related papers (2020-05-15T17:17:45Z) - When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and
Policy Assessment using Compartmental Gaussian Processes [111.69190108272133]
coronavirus disease 2019 (COVID-19) global pandemic has led many countries to impose unprecedented lockdown measures.
Data-driven models that predict COVID-19 fatalities under different lockdown policy scenarios are essential.
This paper develops a Bayesian model for predicting the effects of COVID-19 lockdown policies in a global context.
arXiv Detail & Related papers (2020-05-13T18:21:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.