Epidemic Control on a Large-Scale-Agent-Based Epidemiology Model using
Deep Deterministic Policy Gradient
- URL: http://arxiv.org/abs/2304.04475v1
- Date: Mon, 10 Apr 2023 09:26:07 GMT
- Title: Epidemic Control on a Large-Scale-Agent-Based Epidemiology Model using
Deep Deterministic Policy Gradient
- Authors: Gaurav Deshkar, Jayanta Kshirsagar, Harshal Hayatnagarkar, and Janani
Venugopalan
- Abstract summary: lockdowns, rapid vaccination programs, school closures, and economic stimulus can have positive or unintended negative consequences.
Current research to model and determine an optimal intervention automatically through round-tripping is limited by the simulation objectives, scale (a few thousand individuals), model types that are not suited for intervention studies, and the number of intervention strategies they can explore (discrete vs continuous).
We address these challenges using a Deep Deterministic Policy Gradient (DDPG) based policy optimization framework on a large-scale (100,000 individual) epidemiological agent-based simulation.
- Score: 0.7244731714427565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To mitigate the impact of the pandemic, several measures include lockdowns,
rapid vaccination programs, school closures, and economic stimulus. These
interventions can have positive or unintended negative consequences. Current
research to model and determine an optimal intervention automatically through
round-tripping is limited by the simulation objectives, scale (a few thousand
individuals), model types that are not suited for intervention studies, and the
number of intervention strategies they can explore (discrete vs continuous). We
address these challenges using a Deep Deterministic Policy Gradient (DDPG)
based policy optimization framework on a large-scale (100,000 individual)
epidemiological agent-based simulation where we perform multi-objective
optimization. We determine the optimal policy for lockdown and vaccination in a
minimalist age-stratified multi-vaccine scenario with a basic simulation for
economic activity. With no lockdown and vaccination (mid-age and elderly),
results show optimal economy (individuals below the poverty line) with balanced
health objectives (infection, and hospitalization). An in-depth simulation is
needed to further validate our results and open-source our framework.
Related papers
- Reduced-Rank Multi-objective Policy Learning and Optimization [57.978477569678844]
In practice, causal researchers do not have a single outcome in mind a priori.
In government-assisted social benefit programs, policymakers collect many outcomes to understand the multidimensional nature of poverty.
We present a data-driven dimensionality-reduction methodology for multiple outcomes in the context of optimal policy learning.
arXiv Detail & Related papers (2024-04-29T08:16:30Z) - Modeling and Optimization of Epidemiological Control Policies Through
Reinforcement Learning [0.0]
The impact of a pandemic can be minimized by enforcing certain restrictions on a community.
While minimizing infection and death rates, these restrictions can also lead to economic crises.
We train a reinforcement learning agent to enforce the optimal restriction on a pandemic simulation based on a reward function.
arXiv Detail & Related papers (2024-01-25T22:39:39Z) - Evaluating COVID-19 vaccine allocation policies using Bayesian $m$-top
exploration [53.122045119395594]
We present a novel technique for evaluating vaccine allocation strategies using a multi-armed bandit framework.
$m$-top exploration allows the algorithm to learn $m$ policies for which it expects the highest utility.
We consider the Belgian COVID-19 epidemic using the individual-based model STRIDE, where we learn a set of vaccination policies.
arXiv Detail & Related papers (2023-01-30T12:22:30Z) - Nearly Optimal Latent State Decoding in Block MDPs [74.51224067640717]
In episodic Block MDPs, the decision maker has access to rich observations or contexts generated from a small number of latent states.
We are first interested in estimating the latent state decoding function based on data generated under a fixed behavior policy.
We then study the problem of learning near-optimal policies in the reward-free framework.
arXiv Detail & Related papers (2022-08-17T18:49:53Z) - Discrete Stochastic Optimization for Public Health Interventions with
Constraints [1.8275108630751844]
This paper addresses aspects of the 2009 H1N1 and the COVID-19 pandemics with the spread of disease modeled by the open source Monte Carlo simulations.
The objective of the optimization is to determine the best combination of intervention strategies so as to result in minimal economic loss to society.
arXiv Detail & Related papers (2022-06-27T21:21:25Z) - Pyfectious: An individual-level simulator to discover optimal
containment polices for epidemic diseases [16.28189705178286]
We introduce a simulator capable of modeling a population structure and controlling the disease's propagation at an individualistic level.
To showcase potential applications, the simulator parameters are set based on the formal statistics of the COVID-19 pandemic.
The simulator is used as the environment of a reinforcement learning problem to find the optimal policies to control the pandemic.
arXiv Detail & Related papers (2021-03-24T10:54:46Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - Multi-Objective Model-based Reinforcement Learning for Infectious
Disease Control [19.022696762983017]
Severe infectious diseases such as the novel coronavirus (COVID-19) pose a huge threat to public health.
Stringent control measures, such as school closures and stay-at-home orders, while having significant effects, also bring huge economic losses.
We propose a Multi-Objective Model-based Reinforcement Learning framework to facilitate data-driven decision-making and minimize the overall long-term cost.
arXiv Detail & Related papers (2020-09-09T23:55:27Z) - Data-driven Simulation and Optimization for Covid-19 Exit Strategies [16.31545249131776]
The rapid spread of the Coronavirus SARS-2 is a major challenge that led almost all governments worldwide to take drastic measures to respond to the tragedy.
We have built a pandemic simulation and forecasting toolkit that combines a deep learning estimation of the epidemiological parameters of the disease.
arXiv Detail & Related papers (2020-06-12T11:18:25Z) - A Deep Q-learning/genetic Algorithms Based Novel Methodology For
Optimizing Covid-19 Pandemic Government Actions [63.669642197519934]
We use the SEIR epidemiological model to represent the evolution of the virus COVID-19 over time in the population.
The sequences of actions (confinement, self-isolation, two-meter distance or not taking restrictions) are evaluated according to a reward system.
We prove that our methodology is a valid tool to discover actions governments can take to reduce the negative effects of a pandemic in both senses.
arXiv Detail & Related papers (2020-05-15T17:17:45Z) - When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and
Policy Assessment using Compartmental Gaussian Processes [111.69190108272133]
coronavirus disease 2019 (COVID-19) global pandemic has led many countries to impose unprecedented lockdown measures.
Data-driven models that predict COVID-19 fatalities under different lockdown policy scenarios are essential.
This paper develops a Bayesian model for predicting the effects of COVID-19 lockdown policies in a global context.
arXiv Detail & Related papers (2020-05-13T18:21:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.