論文の概要: Probabilistic Pixel-Adaptive Refinement Networks
- arxiv url: http://arxiv.org/abs/2003.14407v1
- Date: Tue, 31 Mar 2020 17:53:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-18 01:33:07.034553
- Title: Probabilistic Pixel-Adaptive Refinement Networks
- Title(参考訳): 確率的画素適応リファインメントネットワーク
- Authors: Anne S. Wannenwetsch, Stefan Roth
- Abstract要約: 画像適応型後処理法は,高解像度の入力画像をガイダンスデータとして活用することで有用であることを示す。
我々は,画像誘導データに頼らず,画素ごとの予測の信頼性を尊重する確率的画素適応畳み込み(PPAC)を導入する。
PPACが境界アーチファクトの明確化につながるような,光フローとセマンティックセグメンテーションのための精細化ネットワークにおいて,その実用性を実証する。
- 参考スコア(独自算出の注目度): 21.233814875276803
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Encoder-decoder networks have found widespread use in various dense
prediction tasks. However, the strong reduction of spatial resolution in the
encoder leads to a loss of location information as well as boundary artifacts.
To address this, image-adaptive post-processing methods have shown beneficial
by leveraging the high-resolution input image(s) as guidance data. We extend
such approaches by considering an important orthogonal source of information:
the network's confidence in its own predictions. We introduce probabilistic
pixel-adaptive convolutions (PPACs), which not only depend on image guidance
data for filtering, but also respect the reliability of per-pixel predictions.
As such, PPACs allow for image-adaptive smoothing and simultaneously
propagating pixels of high confidence into less reliable regions, while
respecting object boundaries. We demonstrate their utility in refinement
networks for optical flow and semantic segmentation, where PPACs lead to a
clear reduction in boundary artifacts. Moreover, our proposed refinement step
is able to substantially improve the accuracy on various widely used
benchmarks.
- Abstract(参考訳): エンコーダ・デコーダネットワークは様々な密集予測タスクで広く利用されている。
しかし、エンコーダにおける空間分解能の強い低下により、位置情報や境界アーチファクトが失われる。
これを解決するために、高解像度の入力画像をガイダンスデータとして活用することで、画像適応型後処理法が有用であることを示す。
このようなアプローチは、ネットワークが自身の予測に自信を持つという、情報の重要な直交源を考えることで拡張する。
我々は,画像誘導データに頼らず,画素ごとの予測の信頼性を尊重する確率的画素適応畳み込み(PPAC)を導入する。
そのため、PPACは、オブジェクト境界を尊重しながら、高信頼の画素を信頼性の低い領域に同時に伝播する。
PPACが境界アーチファクトの明確化につながるような,光フローとセマンティックセグメンテーションのための精細化ネットワークにおいて,その実用性を実証する。
さらに,提案手法により,様々なベンチマークの精度を大幅に向上させることができる。
関連論文リスト
- Single Image Depth Prediction Made Better: A Multivariate Gaussian Take [163.14849753700682]
本稿では,画素ごとの深度を連続的にモデル化する手法を提案する。
提案手法の精度(MG)は,KITTI深度予測ベンチマークリーダーボードの上位に位置する。
論文 参考訳(メタデータ) (2023-03-31T16:01:03Z) - USegScene: Unsupervised Learning of Depth, Optical Flow and Ego-Motion
with Semantic Guidance and Coupled Networks [31.600708674008384]
UegSceneは、ステレオカメラ画像の奥行き、光学的流れ、エゴモーション推定を意味的に導くためのフレームワークである。
一般的なKITTIデータセットを用いて,提案手法が他の手法よりも大きなマージンで優れていることを示す。
論文 参考訳(メタデータ) (2022-07-15T13:25:47Z) - A Probabilistic Deep Image Prior for Computational Tomography [0.19573380763700707]
既存の深層学習によるトモグラフィ画像再構成手法では,復元の不確かさの正確な推定は得られない。
我々は,古典的全変動(TV)正規化器と現代の深部画像先行(DIP)を組み合わせたトモグラフィー再構成のためのベイズ事前構築を行う。
提案手法は,高次元設定にスケーラブルな線形化Laplace法に基づく手法である。
論文 参考訳(メタデータ) (2022-02-28T14:47:14Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
高度確率密度対応ネットワーク(PDC-Net+)は、精度の高い高密度対応を推定できる。
我々は、堅牢で一般化可能な不確実性予測に適したアーキテクチャと強化されたトレーニング戦略を開発する。
提案手法は,複数の挑戦的幾何マッチングと光学的フローデータセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-09-28T17:56:41Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
空間的に変化する劣化に苦しむ画像の復元のための学習ベースソリューションを提案する。
本研究では、歪み局所化情報を活用し、画像中の困難な領域に動的に適応するネットワーク設計であるSPAIRを提案する。
論文 参考訳(メタデータ) (2021-08-19T11:02:25Z) - A Novel Upsampling and Context Convolution for Image Semantic
Segmentation [0.966840768820136]
最近のセマンティックセグメンテーションの方法は、しばしば深い畳み込みニューラルネットワークを用いたエンコーダデコーダ構造を採用している。
ネットワーク内の画像の空間情報を効率的に保存するために,ガイドフィルタに基づく高密度アップサンプリング畳み込み法を提案する。
ADE20KとPascal-Contextのベンチマークデータセットでは,それぞれ82.86%,81.62%の画素精度を記録した。
論文 参考訳(メタデータ) (2021-03-20T06:16:42Z) - AINet: Association Implantation for Superpixel Segmentation [82.21559299694555]
今回提案する新しいtextbfAssociation textbfImplantation(AI)モジュールは、ネットワークがピクセルとその周辺グリッド間の関係を明示的にキャプチャすることを可能にする。
本手法は最先端性能を実現するだけでなく,十分な推論効率を維持することができた。
論文 参考訳(メタデータ) (2021-01-26T10:40:13Z) - An Empirical Method to Quantify the Peripheral Performance Degradation
in Deep Networks [18.808132632482103]
畳み込みニューラルネットワーク(CNN)カーネルは、各畳み込み層に結合する。
より深いネットワークとストライドベースのダウンサンプリングを組み合わせることで、この領域の伝播は、画像の無視できない部分をカバーすることができる。
我々のデータセットは、高解像度の背景にオブジェクトを挿入することで構築され、画像境界に対してターゲットオブジェクトを特定の位置に配置するサブイメージを収穫することができる。
マスクR-CNNの動作を目標位置の選択にわたって探索することにより、画像境界付近、特に画像コーナーにおいて、パフォーマンス劣化の明確なパターンが明らかになる。
論文 参考訳(メタデータ) (2020-12-04T18:00:47Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
メートル法再ローカライズを行うためのトレーニングネットワークは、従来、正確な画像対応が必要である。
地図内のクエリ画像のローカライズは、登録に使用される参照画像に関係なく、同じ絶対的なポーズを与えるべきである。
提案手法は, 限られた地下構造情報が得られる場合に, 他の教師あり手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-01T19:24:27Z) - Deformable spatial propagation network for depth completion [2.5306673456895306]
本稿では,各画素に対して異なる受容場と親和性行列を適応的に生成する変形可能な空間伝搬ネットワーク(DSPN)を提案する。
これにより、ネットワークは伝播のためのより少ないがより関連性の高い情報を得ることができる。
論文 参考訳(メタデータ) (2020-07-08T16:39:50Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
本稿では,低分解能表現が「容易」な入力を分類するのに十分である,という直感に触発された新しいレゾリューション適応ネットワーク(RANet)を提案する。
RANetでは、入力画像はまず、低解像度表現を効率的に抽出する軽量サブネットワークにルーティングされる。
ネットワーク内の高解像度パスは、"ハード"サンプルを認識する能力を維持している。
論文 参考訳(メタデータ) (2020-03-16T16:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。