論文の概要: A Probabilistic Deep Image Prior for Computational Tomography
- arxiv url: http://arxiv.org/abs/2203.00479v1
- Date: Mon, 28 Feb 2022 14:47:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-02 14:29:28.530067
- Title: A Probabilistic Deep Image Prior for Computational Tomography
- Title(参考訳): コンピュータ断層撮影に先立つ確率的深部画像
- Authors: Javier Antor\'an, Riccardo Barbano, Johannes Leuschner, Jos\'e Miguel
Hern\'andez-Lobato, Bangti Jin
- Abstract要約: 既存の深層学習によるトモグラフィ画像再構成手法では,復元の不確かさの正確な推定は得られない。
我々は,古典的全変動(TV)正規化器と現代の深部画像先行(DIP)を組み合わせたトモグラフィー再構成のためのベイズ事前構築を行う。
提案手法は,高次元設定にスケーラブルな線形化Laplace法に基づく手法である。
- 参考スコア(独自算出の注目度): 0.19573380763700707
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing deep-learning based tomographic image reconstruction methods do not
provide accurate estimates of reconstruction uncertainty, hindering their
real-world deployment. To address this limitation, we construct a Bayesian
prior for tomographic reconstruction, which combines the classical total
variation (TV) regulariser with the modern deep image prior (DIP).
Specifically, we use a change of variables to connect our prior beliefs on the
image TV semi-norm with the hyper-parameters of the DIP network. For the
inference, we develop an approach based on the linearised Laplace method, which
is scalable to high-dimensional settings. The resulting framework provides
pixel-wise uncertainty estimates and a marginal likelihood objective for
hyperparameter optimisation. We demonstrate the method on synthetic and
real-measured high-resolution $\mu$CT data, and show that it provides superior
calibration of uncertainty estimates relative to previous probabilistic
formulations of the DIP.
- Abstract(参考訳): 既存のディープラーニングに基づくトモグラフィ画像再構成手法では,再現の不確かさの正確な推定は行わず,実際の展開を妨げている。
この制限に対処するために,古典的全変動(TV)正規化器と現代の深部画像先行処理(DIP)を組み合わせたトモグラフィ再構成のためのベイジアンを構築する。
具体的には、画像tvセミノルム上の以前の信念とディップネットワークのハイパーパラメータを結びつけるために、変数の変更を使用します。
本研究では,高次元設定にスケーラブルな線形ラプラス法(線形ラプラス法)に基づく手法を開発した。
結果として得られるフレームワークは、画素ワイドの不確実性推定と、ハイパーパラメータ最適化の限界的目標を提供する。
合成および実測高分解能$\mu$CTデータを用いて, 従来のDIPの確率的定式化と比較して, 不確実性推定のキャリブレーションが優れていることを示す。
関連論文リスト
- MOSAIC: Masked Optimisation with Selective Attention for Image
Reconstruction [0.5541644538483947]
本研究では,無作為な計測値の選択を考慮に入れた画像再構成のための新しい圧縮センシングフレームワークを提案する。
MOSAICは、エンコードされた一連の測定に注意機構を効率的に適用するために埋め込み技術を採用している。
既存のCS再建手法の代替として,提案するアーキテクチャを検証した。
論文 参考訳(メタデータ) (2023-06-01T17:05:02Z) - Single Image Depth Prediction Made Better: A Multivariate Gaussian Take [163.14849753700682]
本稿では,画素ごとの深度を連続的にモデル化する手法を提案する。
提案手法の精度(MG)は,KITTI深度予測ベンチマークリーダーボードの上位に位置する。
論文 参考訳(メタデータ) (2023-03-31T16:01:03Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
本稿では,参照等級画像のみを生成的設定でトレーニングした,新しいディープニューラルネットワークベース正規化器を提案する。
その結果,最先端のディープラーニング手法に匹敵する競争性能が示された。
論文 参考訳(メタデータ) (2022-10-25T08:34:29Z) - Fast Scalable Image Restoration using Total Variation Priors and
Expectation Propagation [7.7731951589289565]
本稿では,全変動(TV)を用いた画像復元のための拡張性のあるベイズ近似手法を提案する。
我々は期待伝搬(EP)フレームワークを用いて最小平均二乗誤差(MMSE)推定器と限界(ピクセル単位)分散を近似する。
論文 参考訳(メタデータ) (2021-10-04T17:28:41Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
高度確率密度対応ネットワーク(PDC-Net+)は、精度の高い高密度対応を推定できる。
我々は、堅牢で一般化可能な不確実性予測に適したアーキテクチャと強化されたトレーニング戦略を開発する。
提案手法は,複数の挑戦的幾何マッチングと光学的フローデータセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-09-28T17:56:41Z) - NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor
Multi-view Stereo [97.07453889070574]
本稿では,従来のSfM再構成と学習に基づく先行手法を併用した多視点深度推定手法を提案する。
提案手法は室内シーンにおける最先端手法を著しく上回ることを示す。
論文 参考訳(メタデータ) (2021-09-02T17:54:31Z) - Deep Reparametrization of Multi-Frame Super-Resolution and Denoising [167.42453826365434]
本稿では,多フレーム画像復元作業によく用いられる最大後部定式化の深部再パラメータ化を提案する。
提案手法は,学習された誤差メトリックと,対象画像の潜在表現を導入することによって導かれる。
我々は、バースト復調およびバースト超解像データセットに関する包括的な実験を通して、我々のアプローチを検証する。
論文 参考訳(メタデータ) (2021-08-18T17:57:02Z) - Riggable 3D Face Reconstruction via In-Network Optimization [58.016067611038046]
本稿では,単眼画像からの3次元顔再構成法を提案する。
表情、ポーズ、照明を含む画像ごとのパーソナライズされた顔リグとパラメータを共同で推定する。
実験により,SOTA復元精度,ロバスト性,一般化能力が得られた。
論文 参考訳(メタデータ) (2021-04-08T03:53:20Z) - Using Deep Image Priors to Generate Counterfactual Explanations [38.62513524757573]
ディープ画像先行(DIP)は、潜在表現エンコーディングからプレイメージを得るために用いられる。
本稿では,予測器と共同で学習した補助損失推定器に基づく新たな正規化戦略を提案する。
論文 参考訳(メタデータ) (2020-10-22T20:40:44Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
論文 参考訳(メタデータ) (2020-10-05T14:18:52Z) - Deep Probabilistic Feature-metric Tracking [27.137827823264942]
画素単位の深度特徴写像と深度特徴量不確実性写像を学習するための新しいフレームワークを提案する。
CNNは、より高速で信頼性の高い収束のための深い初期ポーズを予測する。
実験により,TUM RGB-Dデータセットと3次元剛性物体追跡データセットの最先端性能が示された。
論文 参考訳(メタデータ) (2020-08-31T11:47:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。