Semi-Supervised Cervical Dysplasia Classification With Learnable Graph
Convolutional Network
- URL: http://arxiv.org/abs/2004.00191v1
- Date: Wed, 1 Apr 2020 01:53:26 GMT
- Title: Semi-Supervised Cervical Dysplasia Classification With Learnable Graph
Convolutional Network
- Authors: Yanglan Ou, Yuan Xue, Ye Yuan, Tao Xu, Vincent Pisztora, Jia Li,
Xiaolei Huang
- Abstract summary: Digital cervicography has great potential as a primary or auxiliary screening tool.
Traditional fully-supervised training of such systems requires large amounts of annotated data.
We propose a novel graph convolutional network (GCN) based semi-supervised classification model.
- Score: 25.685255609487623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cervical cancer is the second most prevalent cancer affecting women today. As
the early detection of cervical carcinoma relies heavily upon screening and
pre-clinical testing, digital cervicography has great potential as a primary or
auxiliary screening tool, especially in low-resource regions due to its low
cost and easy access. Although an automated cervical dysplasia detection system
has been desirable, traditional fully-supervised training of such systems
requires large amounts of annotated data which are often labor-intensive to
collect. To alleviate the need for much manual annotation, we propose a novel
graph convolutional network (GCN) based semi-supervised classification model
that can be trained with fewer annotations. In existing GCNs, graphs are
constructed with fixed features and can not be updated during the learning
process. This limits their ability to exploit new features learned during graph
convolution. In this paper, we propose a novel and more flexible GCN model with
a feature encoder that adaptively updates the adjacency matrix during learning
and demonstrate that this model design leads to improved performance. Our
experimental results on a cervical dysplasia classification dataset show that
the proposed framework outperforms previous methods under a semi-supervised
setting, especially when the labeled samples are scarce.
Related papers
- Weakly supervised deep learning model with size constraint for prostate cancer detection in multiparametric MRI and generalization to unseen domains [0.90668179713299]
We show that the model achieves on-par performance with strong fully supervised baseline models.
We also observe a performance decrease for both fully supervised and weakly supervised models when tested on unseen data domains.
arXiv Detail & Related papers (2024-11-04T12:24:33Z) - Mitigating annotation shift in cancer classification using single image generative models [1.1864334278373239]
This study simulates, analyses and mitigates annotation shifts in cancer classification in the breast mammography domain.
We propose a training data augmentation approach based on single-image generative models for the affected class.
Our study offers key insights into annotation shift in deep learning breast cancer classification and explores the potential of single-image generative models to overcome domain shift challenges.
arXiv Detail & Related papers (2024-05-30T07:02:50Z) - Multi-stages attention Breast cancer classification based on nonlinear
spiking neural P neurons with autapses [10.16176106140093]
Downsampling in deep networks may lead to loss of information.
We propose a multi-stages attention architecture based on NSNP neurons with autapses.
It achieves a classification accuracy of 96.32% at all magnification cases, outperforming state-of-the-art methods.
arXiv Detail & Related papers (2023-12-20T06:52:38Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
Degenerative spinal pathologies are highly prevalent among the elderly population.
Timely diagnosis of osteoporotic fractures and other degenerative deformities facilitates proactive measures to mitigate the risk of severe back pain and disability.
In this study, we specifically explore the use of shape auto-encoders for vertebrae.
arXiv Detail & Related papers (2023-12-08T18:11:22Z) - A Voting-Stacking Ensemble of Inception Networks for Cervical Cytology
Classification [10.61705267657852]
Cervical cancer is one of the most severe diseases threatening women's health.
We propose a Voting-Stacking ensemble strategy, which employs three Inception networks as base learners and integrates their outputs through a voting ensemble.
The experimental results outperform the current state-of-the-art (SOTA) methods, demonstrating its potential for reducing screening workload and helping pathologists detect cervical cancer.
arXiv Detail & Related papers (2023-08-05T03:21:12Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
We propose a knowledge graph with Dynamic structure and nodes to facilitate medical report generation with Contrastive Learning.
In detail, the fundamental structure of our graph is pre-constructed from general knowledge.
Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation.
arXiv Detail & Related papers (2023-03-18T03:53:43Z) - Clinically Acceptable Segmentation of Organs at Risk in Cervical Cancer
Radiation Treatment from Clinically Available Annotations [0.0]
We present an approach to learn a deep learning model for the automatic segmentation of Organs at Risk (OARs) in cervical cancer radiation treatment.
We employ simples for automatic data cleaning to minimize data inhomogeneity, label noise, and missing annotations.
We develop a semi-supervised learning approach utilizing a teacher-student setup, annotation imputation, and uncertainty-guided training to learn in presence of missing annotations.
arXiv Detail & Related papers (2023-02-21T13:24:40Z) - Transductive Linear Probing: A Novel Framework for Few-Shot Node
Classification [56.17097897754628]
We show that transductive linear probing with self-supervised graph contrastive pretraining can outperform the state-of-the-art fully supervised meta-learning based methods under the same protocol.
We hope this work can shed new light on few-shot node classification problems and foster future research on learning from scarcely labeled instances on graphs.
arXiv Detail & Related papers (2022-12-11T21:10:34Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.