A generalised OMP algorithm for feature selection with application to
gene expression data
- URL: http://arxiv.org/abs/2004.00281v1
- Date: Wed, 1 Apr 2020 08:33:02 GMT
- Title: A generalised OMP algorithm for feature selection with application to
gene expression data
- Authors: Michail Tsagris, Zacharias Papadovasilakis, Kleanthi Lakiotaki and
Ioannis Tsamardinos
- Abstract summary: To apply to molecular data, feature selection algorithms need to be scalable to tens of thousands of available features.
We propose gOMP, a highly-scalable generalisation of the Orthogonal Matching Pursuit feature selection algorithm.
- Score: 1.969028842568933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature selection for predictive analytics is the problem of identifying a
minimal-size subset of features that is maximally predictive of an outcome of
interest. To apply to molecular data, feature selection algorithms need to be
scalable to tens of thousands of available features. In this paper, we propose
gOMP, a highly-scalable generalisation of the Orthogonal Matching Pursuit
feature selection algorithm to several directions: (a) different types of
outcomes, such as continuous, binary, nominal, and time-to-event, (b) different
types of predictive models (e.g., linear least squares, logistic regression),
(c) different types of predictive features (continuous, categorical), and (d)
different, statistical-based stopping criteria. We compare the proposed
algorithm against LASSO, a prototypical, widely used algorithm for
high-dimensional data. On dozens of simulated datasets, as well as, real gene
expression datasets, gOMP is on par, or outperforms LASSO for case-control
binary classification, quantified outcomes (regression), and (censored)
survival times (time-to-event) analysis. gOMP has also several theoretical
advantages that are discussed. While gOMP is based on quite simple and basic
statistical ideas, easy to implement and to generalize, we also show in an
extensive evaluation that it is also quite effective in bioinformatics analysis
settings.
Related papers
- Computational-Statistical Gaps in Gaussian Single-Index Models [77.1473134227844]
Single-Index Models are high-dimensional regression problems with planted structure.
We show that computationally efficient algorithms, both within the Statistical Query (SQ) and the Low-Degree Polynomial (LDP) framework, necessarily require $Omega(dkstar/2)$ samples.
arXiv Detail & Related papers (2024-03-08T18:50:19Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - Dual-stage optimizer for systematic overestimation adjustment applied to
multi-objective genetic algorithms for biomarker selection [0.18648070031379424]
Biomarker identification with feature selection methods can be addressed as a multi-objective problem with trade-offs between predictive ability and parsimony in the number of features.
We propose DOSA-MO, a novel multi-objective optimization wrapper algorithm that learns how the original estimation, its variance, and the feature set size of the solutions predict the overestimation.
arXiv Detail & Related papers (2023-12-27T16:13:14Z) - Gram-Schmidt Methods for Unsupervised Feature Extraction and Selection [7.373617024876725]
We propose a Gram-Schmidt process over function spaces to detect and map out nonlinear dependencies.
We provide experimental results for synthetic and real-world benchmark datasets.
Surprisingly, our linear feature extraction algorithms are comparable and often outperform several important nonlinear feature extraction methods.
arXiv Detail & Related papers (2023-11-15T21:29:57Z) - Best-Subset Selection in Generalized Linear Models: A Fast and
Consistent Algorithm via Splicing Technique [0.6338047104436422]
Best subset section has been widely regarded as the Holy Grail of problems of this type.
We proposed and illustrated an algorithm for best subset recovery in mild conditions.
Our implementation achieves approximately a fourfold speedup compared to popular variable selection toolkits.
arXiv Detail & Related papers (2023-08-01T03:11:31Z) - Flexible variable selection in the presence of missing data [0.0]
We propose a non-parametric variable selection algorithm combined with multiple imputation to develop flexible panels in the presence of missing-at-random data.
We show that our proposal has good operating characteristics and results in panels with higher classification and variable selection performance.
arXiv Detail & Related papers (2022-02-25T21:41:03Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class.
This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples.
Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class.
arXiv Detail & Related papers (2021-12-15T18:56:39Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Generalized Matrix Factorization: efficient algorithms for fitting
generalized linear latent variable models to large data arrays [62.997667081978825]
Generalized Linear Latent Variable models (GLLVMs) generalize such factor models to non-Gaussian responses.
Current algorithms for estimating model parameters in GLLVMs require intensive computation and do not scale to large datasets.
We propose a new approach for fitting GLLVMs to high-dimensional datasets, based on approximating the model using penalized quasi-likelihood.
arXiv Detail & Related papers (2020-10-06T04:28:19Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.