論文の概要: Impact of Semantic Granularity on Geographic Information Search Support
- arxiv url: http://arxiv.org/abs/2004.00293v1
- Date: Wed, 1 Apr 2020 08:58:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-17 19:31:24.716516
- Title: Impact of Semantic Granularity on Geographic Information Search Support
- Title(参考訳): 意味的粒度が地理情報検索支援に与える影響
- Authors: Noemi Mauro, Liliana Ardissono, Laura Di Rocco, Michela Bertolotto and
Giovanna Guerrini
- Abstract要約: 地理情報検索におけるセッションベースのクエリ拡張について考察する。
本研究では,知識表現における詳細レベルの違いが,複雑な情報空間の探索においてユーザを導く能力にどのように影響するかを検討する。
- 参考スコア(独自算出の注目度): 3.7798600249187295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Information Retrieval research has used semantics to provide accurate
search results, but the analysis of conceptual abstraction has mainly focused
on information integration. We consider session-based query expansion in
Geographical Information Retrieval, and investigate the impact of semantic
granularity (i.e., specificity of concepts representation) on the suggestion of
relevant types of information to search for. We study how different levels of
detail in knowledge representation influence the capability of guiding the user
in the exploration of a complex information space. A comparative analysis of
the performance of a query expansion model, using three spatial ontologies
defined at different semantic granularity levels, reveals that a fine-grained
representation enhances recall. However, precision depends on how closely the
ontologies match the way people conceptualize and verbally describe the
geographic space.
- Abstract(参考訳): 情報検索研究は、正確な検索結果を提供するために意味論を用いたが、概念抽象の分析は主に情報統合に焦点を当てている。
地理情報検索におけるセッションベースの問合せ拡張について検討し,意味的粒度(概念表現の特異性)が検索対象の情報型の提案に与える影響について検討する。
本研究では,知識表現における詳細レベルの違いが,複雑な情報空間の探索においてユーザを導く能力にどのように影響するかを検討する。
異なる意味的粒度レベルで定義された3つの空間的オントロジーを用いたクエリ拡張モデルの性能比較分析により,細粒度表現がリコールを促進することが明らかとなった。
しかし、正確には、オントロジーが人々の概念化や地理的空間の表現にいかに近いかに依存する。
関連論文リスト
- Comparing the information content of probabilistic representation spaces [3.7277730514654555]
確率的表現空間は、データセットに関する情報を伝達し、トレーニング損失やネットワークアーキテクチャなどの要因の影響を理解するために、そのような空間の情報内容を比較する。
ここでは、ポイントベースの比較尺度に基づいて構築する代わりに、ハードクラスタリングに関する文献から古典的な手法に基づいて構築する。
本稿では,データセットのサンプルを用いて表現空間をフィンガープリントする手法を提案する。
論文 参考訳(メタデータ) (2024-05-31T17:33:07Z) - Capturing Pertinent Symbolic Features for Enhanced Content-Based
Misinformation Detection [0.0]
誤解を招く内容の検出は、言語的・ドメイン的多様性の極端さから、大きなハードルとなる。
本稿では,この現象を特徴付ける言語特性と,最も一般的な誤情報データセットの表現方法について分析する。
ニューラルネットワークモデルと組み合わせた関連する記号的知識の適切な利用は、誤解を招くコンテンツを検出するのに有効であることを示す。
論文 参考訳(メタデータ) (2024-01-29T16:42:34Z) - Understanding Before Recommendation: Semantic Aspect-Aware Review Exploitation via Large Language Models [53.337728969143086]
レコメンデーションシステムは、クリックやレビューのようなユーザとイテムのインタラクションを利用して表現を学習する。
従来の研究では、様々な側面や意図にまたがるユーザの嗜好をモデル化することで、推奨精度と解釈可能性を改善する。
そこで本研究では,意味的側面と認識的相互作用を明らかにするためのチェーンベースのプロンプト手法を提案する。
論文 参考訳(メタデータ) (2023-12-26T15:44:09Z) - Knowledge Graph Enhanced Aspect-Level Sentiment Analysis [1.342834401139078]
本稿では,文脈固有の単語の意味の課題に対処し,感情分析を強化する手法を提案する。
BERTモデルの利点と知識グラフに基づく同義データを組み合わせる。
特定の側面に関連付けられた感情を分類するために、この手法は位置データを統合するメモリバンクを構築する。
データはDCGRUを用いて分析され、特定のアスペクト項に関連する感情特性をピンポイントする。
論文 参考訳(メタデータ) (2023-12-02T04:45:17Z) - Explainable Representations for Relation Prediction in Knowledge Graphs [0.0]
本稿では、知識グラフにおける関係予測を支援するための説明可能な表現のための新しいアプローチであるSEEKを提案する。
それは、エンティティと各サブグラフの学習表現の間の関連する共有意味的側面を識別することに基づいている。
本研究では,タンパク質間相互作用予測と遺伝子発現関連予測の2つの実世界の関係予測タスクについてSEEKを評価した。
論文 参考訳(メタデータ) (2023-06-22T06:18:40Z) - Robust Saliency-Aware Distillation for Few-shot Fine-grained Visual
Recognition [57.08108545219043]
サンプルが少ない新しいサブカテゴリを認識することは、コンピュータビジョンにおいて不可欠で挑戦的な研究課題である。
既存の文献は、ローカルベースの表現アプローチを採用することでこの問題に対処している。
本稿では,ロバスト・サリエンシ・アウェア蒸留法(RSaD)を提案する。
論文 参考訳(メタデータ) (2023-05-12T00:13:17Z) - A Threefold Review on Deep Semantic Segmentation: Efficiency-oriented,
Temporal and Depth-aware design [77.34726150561087]
我々は、自動運転車のビジョンの文脈において、Deep Semanticの最も関連性があり最近の進歩について調査を行う。
私たちの主な目的は、それぞれの視点で直面している主要な方法、利点、制限、結果、課題に関する包括的な議論を提供することです。
論文 参考訳(メタデータ) (2023-03-08T01:29:55Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
本稿では,知識グラフ拡張ネットワーク(KGAN)を提案する。
KGANは感情の特徴表現を、文脈、構文、知識に基づく複数の視点から捉えている。
3つの人気のあるABSAベンチマークの実験は、我々のKGANの有効性と堅牢性を示している。
論文 参考訳(メタデータ) (2022-01-13T08:25:53Z) - Named Entity Recognition for Social Media Texts with Semantic
Augmentation [70.44281443975554]
名前付きエンティティ認識のための既存のアプローチは、短いテキストと非公式テキストで実行される場合、データ空間の問題に悩まされる。
そこで我々は,NER によるソーシャルメディアテキストに対するニューラルベースアプローチを提案し,ローカルテキストと拡張セマンティクスの両方を考慮に入れた。
論文 参考訳(メタデータ) (2020-10-29T10:06:46Z) - SIRI: Spatial Relation Induced Network For Spatial Description
Resolution [64.38872296406211]
言語誘導型ローカライゼーションのための新しい関係誘導型ネットワーク(SIRI)を提案する。
提案手法は,80ピクセルの半径で測定した精度で,最先端手法よりも約24%優れていた。
提案手法は,Touchdownと同じ設定で収集した拡張データセットをうまく一般化する。
論文 参考訳(メタデータ) (2020-10-27T14:04:05Z) - Natural language technology and query expansion: issues,
state-of-the-art and perspectives [0.0]
クエリのあいまいさや誤解釈を引き起こす言語特性と、追加の要因は、ユーザの情報ニーズを正確に表現する能力に影響を与える。
汎用言語に基づく問合せ拡張フレームワークの解剖学を概説し,モジュールに基づく分解を提案する。
それぞれのモジュールについて、文献における最先端のソリューションをレビューし、使用するテクニックの光の下で分類する。
論文 参考訳(メタデータ) (2020-04-23T11:39:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。