論文の概要: Deep transformation models: Tackling complex regression problems with
neural network based transformation models
- arxiv url: http://arxiv.org/abs/2004.00464v1
- Date: Wed, 1 Apr 2020 14:23:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-17 17:59:45.892987
- Title: Deep transformation models: Tackling complex regression problems with
neural network based transformation models
- Title(参考訳): ディープトランスフォーメーションモデル:ニューラルネットワークに基づくトランスフォーメーションモデルによる複雑な回帰問題に取り組む
- Authors: Beate Sick, Torsten Hothorn, Oliver D\"urr
- Abstract要約: 確率回帰のための深層変換モデルを提案する。
これは、結果の不確実性を捉える最も徹底的な方法である条件付き確率分布全体を推定する。
本手法は複雑な入力データに対して有効であり,画像データにCNNアーキテクチャを適用して実演する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a deep transformation model for probabilistic regression. Deep
learning is known for outstandingly accurate predictions on complex data but in
regression tasks, it is predominantly used to just predict a single number.
This ignores the non-deterministic character of most tasks. Especially if
crucial decisions are based on the predictions, like in medical applications,
it is essential to quantify the prediction uncertainty. The presented deep
learning transformation model estimates the whole conditional probability
distribution, which is the most thorough way to capture uncertainty about the
outcome. We combine ideas from a statistical transformation model (most likely
transformation) with recent transformation models from deep learning
(normalizing flows) to predict complex outcome distributions. The core of the
method is a parameterized transformation function which can be trained with the
usual maximum likelihood framework using gradient descent. The method can be
combined with existing deep learning architectures. For small machine learning
benchmark datasets, we report state of the art performance for most dataset and
partly even outperform it. Our method works for complex input data, which we
demonstrate by employing a CNN architecture on image data.
- Abstract(参考訳): 確率回帰のための深層変換モデルを提案する。
深層学習は複雑なデータに対する顕著な精度の予測で知られているが、回帰タスクでは、1つの数だけを予測するために主に使用される。
これはほとんどのタスクの非決定論的特徴を無視します。
特に重要な決定が医学的応用のように予測に基づいている場合は、予測の不確かさを定量化することが不可欠である。
提案したディープラーニング変換モデルは、結果の不確実性を捉える最も徹底的な方法である条件付き確率分布全体を推定する。
統計的変換モデル(おそらくは変換)のアイデアと、ディープラーニング(正規化フロー)の最近の変換モデルを組み合わせて、複雑な結果分布を予測する。
この手法のコアはパラメータ化変換関数であり、勾配降下を用いて通常の最大度フレームワークで訓練することができる。
この手法は既存のディープラーニングアーキテクチャと組み合わせることができる。
小規模機械学習ベンチマークデータセットの場合、ほとんどのデータセットにおけるアートパフォーマンスの状態を報告し、その性能を部分的に上回っています。
本手法は,画像データにcnnアーキテクチャを用いることにより,複雑な入力データに対して動作する。
関連論文リスト
- Generalized Regression with Conditional GANs [2.4171019220503402]
本稿では,学習データセットにおける特徴ラベルペアと,対応する入力と組み合わせて出力を区別できない予測関数を学習することを提案する。
回帰に対するこのアプローチは、私たちが適合するデータの分布に対する仮定を減らし、表現能力が向上することを示す。
論文 参考訳(メタデータ) (2024-04-21T01:27:47Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Learning Active Subspaces and Discovering Important Features with Gaussian Radial Basis Functions Neural Networks [0.0]
モデルの訓練が完了すると抽出できる精度行列のスペクトルに含まれる貴重な情報を示す。
回帰,分類,特徴選択タスクの数値実験を行った。
その結果,提案モデルが競合モデルに比べて魅力的な予測性能が得られるだけでなく,予測性能も向上することが示唆された。
論文 参考訳(メタデータ) (2023-07-11T09:54:30Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
我々はデータ拡張を選択するための便利な勾配法を開発した。
我々はKronecker-factored Laplace近似を我々の目的とする限界確率に近似する。
論文 参考訳(メタデータ) (2022-02-22T02:51:11Z) - Merging Two Cultures: Deep and Statistical Learning [3.15863303008255]
深層学習と統計的学習の2つの文化を組み合わせることで、構造化された高次元データに対する洞察が得られる。
モデルの出力層における確率的手法を用いて予測,最適化,不確実性を実現できることを示す。
論文 参考訳(メタデータ) (2021-10-22T02:57:21Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
ディープラーニングにおける分類と回帰設定の両面でのデータ効率の向上を目標とする。
両世界の力を生かすために,我々は新しいX-モデルを提案する。
X-モデルは、特徴抽出器とタスク固有のヘッドの間でミニマックスゲームを行う。
論文 参考訳(メタデータ) (2021-10-09T13:56:48Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
本稿では,2次元の証拠から3次元の人体復元の問題に焦点を当てた。
我々は,この問題を,入力から3Dポーズの分布へのマッピング学習として再考した。
論文 参考訳(メタデータ) (2021-08-26T17:55:11Z) - Transfer learning suppresses simulation bias in predictive models built
from sparse, multi-modal data [15.587831925516957]
科学、工学、ビジネスにおける多くの問題は、ごくわずかな観察に基づく予測を必要とする。
堅牢な予測モデルを構築するには、特に設計空間が多次元である場合、これらのスパースデータをシミュレーションデータで拡張する必要がある。
ディープラーニングの最近の開発を組み合わせて、マルチモーダルデータからより堅牢な予測モデルを構築します。
論文 参考訳(メタデータ) (2021-04-19T23:28:32Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
我々は予測時間バッチ正規化と呼び、共変量シフト時のモデル精度とキャリブレーションを大幅に改善する。
予測時間バッチ正規化は、既存の最先端アプローチに相補的な利点をもたらし、ロバスト性を向上させることを示します。
この手法は、事前トレーニングと併用して使用すると、さまざまな結果が得られるが、より自然なタイプのデータセットシフトでは、パフォーマンスが良くないようだ。
論文 参考訳(メタデータ) (2020-06-19T05:08:43Z) - Predictive Complexity Priors [3.5547661483076998]
本稿では,モデルの予測と参照モデルの予測を比較して定義する機能的先行モデルを提案する。
もともとはモデル出力で定義されていたが、変数の変更によってモデルパラメータの前の値を転送する。
我々は,高次元回帰,ニューラルネットワーク深度の推論,数ショット学習における統計的強度の共有に先立って,予測複雑性を適用した。
論文 参考訳(メタデータ) (2020-06-18T18:39:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。