論文の概要: Generalized Regression with Conditional GANs
- arxiv url: http://arxiv.org/abs/2404.13500v1
- Date: Sun, 21 Apr 2024 01:27:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 18:40:56.632493
- Title: Generalized Regression with Conditional GANs
- Title(参考訳): 条件付きGANを用いた一般化回帰
- Authors: Deddy Jobson, Eddy Hudson,
- Abstract要約: 本稿では,学習データセットにおける特徴ラベルペアと,対応する入力と組み合わせて出力を区別できない予測関数を学習することを提案する。
回帰に対するこのアプローチは、私たちが適合するデータの分布に対する仮定を減らし、表現能力が向上することを示す。
- 参考スコア(独自算出の注目度): 2.4171019220503402
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Regression is typically treated as a curve-fitting process where the goal is to fit a prediction function to data. With the help of conditional generative adversarial networks, we propose to solve this age-old problem in a different way; we aim to learn a prediction function whose outputs, when paired with the corresponding inputs, are indistinguishable from feature-label pairs in the training dataset. We show that this approach to regression makes fewer assumptions on the distribution of the data we are fitting to and, therefore, has better representation capabilities. We draw parallels with generalized linear models in statistics and show how our proposal serves as an extension of them to neural networks. We demonstrate the superiority of this new approach to standard regression with experiments on multiple synthetic and publicly available real-world datasets, finding encouraging results, especially with real-world heavy-tailed regression datasets. To make our work more reproducible, we release our source code. Link to repository: https://anonymous.4open.science/r/regressGAN-7B71/
- Abstract(参考訳): 回帰は通常、予測関数をデータに適合させることを目標とする曲線適合プロセスとして扱われる。
条件付き生成逆数ネットワークの助けを借りて、この年齢の古い問題を異なる方法で解くことを提案し、トレーニングデータセットにおける特徴ラベル対と、対応する入力と組み合わせて出力が区別できない予測関数を学習することを目的とする。
回帰に対するこのアプローチは、私たちが適合するデータの分布に対する仮定を減らし、表現能力が向上することを示す。
我々は、統計学における一般化線形モデルとの並列性を描き、我々の提案がニューラルネットワークへの拡張としてどのように役立つかを示す。
複数の合成および公開可能な実世界のデータセットで実験を行い、特に実世界の重み付き回帰データセットにおいて、この新しい手法の標準回帰に対する優位性を実証する。
作業をより再現可能にするために、ソースコードをリリースします。
リポジトリへのリンク:https://anonymous.4open.science/r/regressGAN-7B71/
関連論文リスト
- LFFR: Logistic Function For (single-output) Regression [0.0]
完全同型暗号方式で暗号化されたデータを用いたプライバシー保護型回帰トレーニングを実装した。
我々は,ロジスティック関数を用いたホモモルフィック回帰のための新しい,効率的なアルゴリズムLFFRを開発した。
論文 参考訳(メタデータ) (2024-07-13T17:33:49Z) - Robust Capped lp-Norm Support Vector Ordinal Regression [85.84718111830752]
正規回帰は、ラベルが固有の順序を示す特殊な教師付き問題である。
卓越した順序回帰モデルとしてのベクトル順序回帰は、多くの順序回帰タスクで広く使われている。
我々は,新たなモデルであるCapped $ell_p$-Norm Support Vector Ordinal Regression (CSVOR)を導入する。
論文 参考訳(メタデータ) (2024-04-25T13:56:05Z) - Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift [12.770658031721435]
本稿では,学習前のニューラル回帰モデルの最後の層の重みを適応させて,異なる分布から得られる入力データを改善する手法を提案する。
本稿では,この軽量なスペクトル適応手法により,合成および実世界のデータセットの分布外性能が向上することを示す。
論文 参考訳(メタデータ) (2023-12-29T04:15:58Z) - Learning Defect Prediction from Unrealistic Data [57.53586547895278]
事前訓練されたコードのモデルは、コード理解と生成タスクに人気がある。
このようなモデルは大きい傾向があり、訓練データの総量を必要とする。
人工的に注入されたバグのある関数など、はるかに大きくてもより現実的なデータセットを持つモデルをトレーニングすることが一般的になった。
このようなデータで訓練されたモデルは、実際のプログラムでは性能が劣りながら、同様のデータでのみうまく機能する傾向にある。
論文 参考訳(メタデータ) (2023-11-02T01:51:43Z) - Engression: Extrapolation through the Lens of Distributional Regression [2.519266955671697]
我々は、エングレースと呼ばれるニューラルネットワークに基づく分布回帰手法を提案する。
エングレスモデル(engression model)は、適合した条件分布からサンプリングできるという意味で生成され、高次元結果にも適している。
一方、最小二乗法や量子回帰法のような従来の回帰手法は、同じ仮定の下では不十分である。
論文 参考訳(メタデータ) (2023-07-03T08:19:00Z) - Deep Regression Unlearning [6.884272840652062]
我々は、プライバシー攻撃に対して堅牢な、一般化された深層回帰学習手法を導入する。
我々は、コンピュータビジョン、自然言語処理、予測アプリケーションのための回帰学習実験を行う。
論文 参考訳(メタデータ) (2022-10-15T05:00:20Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
我々はデータ拡張を選択するための便利な勾配法を開発した。
我々はKronecker-factored Laplace近似を我々の目的とする限界確率に近似する。
論文 参考訳(メタデータ) (2022-02-22T02:51:11Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
ディープラーニングにおける分類と回帰設定の両面でのデータ効率の向上を目標とする。
両世界の力を生かすために,我々は新しいX-モデルを提案する。
X-モデルは、特徴抽出器とタスク固有のヘッドの間でミニマックスゲームを行う。
論文 参考訳(メタデータ) (2021-10-09T13:56:48Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
この研究は、NLPモデル更新における回帰エラーの定量化、低減、分析に重点を置いている。
回帰フリーモデル更新を制約付き最適化問題に定式化する。
モデルアンサンブルが回帰を減らす方法を実証的に分析します。
論文 参考訳(メタデータ) (2021-05-07T03:33:00Z) - Variational Bayesian Unlearning [54.26984662139516]
本研究では, ベイズモデルの学習を, 消去する訓練データの小さな部分集合から, ほぼ非学習する問題について検討する。
消去されたデータから完全に学習されていないデータと、過去の信念を完全に忘れていないデータとをトレードオフする証拠を最小化するのと等価であることを示す。
VI を用いたモデルトレーニングでは、完全なデータから近似した(正確には)後続の信念しか得られず、未学習をさらに困難にしている。
論文 参考訳(メタデータ) (2020-10-24T11:53:00Z) - Deep transformation models: Tackling complex regression problems with
neural network based transformation models [0.0]
確率回帰のための深層変換モデルを提案する。
これは、結果の不確実性を捉える最も徹底的な方法である条件付き確率分布全体を推定する。
本手法は複雑な入力データに対して有効であり,画像データにCNNアーキテクチャを適用して実演する。
論文 参考訳(メタデータ) (2020-04-01T14:23:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。