論文の概要: Constrained-Space Optimization and Reinforcement Learning for Complex
Tasks
- arxiv url: http://arxiv.org/abs/2004.00716v1
- Date: Wed, 1 Apr 2020 21:50:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-17 18:19:48.192873
- Title: Constrained-Space Optimization and Reinforcement Learning for Complex
Tasks
- Title(参考訳): 複雑なタスクに対する制約空間最適化と強化学習
- Authors: Ya-Yen Tsai, Bo Xiao, Edward Johns, Guang-Zhong Yang
- Abstract要約: Demonstrationからの学習は、オペレータ操作スキルをロボットに転送するためにますます利用されている。
本稿では,複雑なタスクを管理するための制約付き空間最適化と強化学習手法を提案する。
- 参考スコア(独自算出の注目度): 42.648636742651185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning from Demonstration is increasingly used for transferring operator
manipulation skills to robots. In practice, it is important to cater for
limited data and imperfect human demonstrations, as well as underlying safety
constraints. This paper presents a constrained-space optimization and
reinforcement learning scheme for managing complex tasks. Through interactions
within the constrained space, the reinforcement learning agent is trained to
optimize the manipulation skills according to a defined reward function. After
learning, the optimal policy is derived from the well-trained reinforcement
learning agent, which is then implemented to guide the robot to conduct tasks
that are similar to the experts' demonstrations. The effectiveness of the
proposed method is verified with a robotic suturing task, demonstrating that
the learned policy outperformed the experts' demonstrations in terms of the
smoothness of the joint motion and end-effector trajectories, as well as the
overall task completion time.
- Abstract(参考訳): Demonstrationからの学習は、オペレータ操作スキルをロボットに転送するためにますます利用されている。
実際には、安全上の制約だけでなく、限られたデータと不完全な人間のデモンストレーションに対応することが重要です。
本稿では,複雑なタスクを管理するための制約空間最適化と強化学習手法を提案する。
拘束空間内の相互作用により、強化学習エージェントは、所定の報酬関数に従って操作スキルを最適化するように訓練される。
学習後、最適な方針は訓練された強化学習エージェントから導き出され、専門家のデモンストレーションに類似したタスクをロボットに指導するために実装される。
提案手法の有効性をロボット縫合作業で検証し, 学習した方針が, 関節運動の滑らかさ, 終末効果の軌跡, 全体の作業完了時間において, 専門家のデモンストレーションよりも優れていることを示した。
関連論文リスト
- SPIRE: Synergistic Planning, Imitation, and Reinforcement Learning for Long-Horizon Manipulation [58.14969377419633]
タスクをより小さな学習サブプロブレムに分解し、第2に模倣と強化学習を組み合わせてその強みを最大化するシステムであるspireを提案する。
我々は、模倣学習、強化学習、計画を統合する従来の手法よりも平均タスク性能が35%から50%向上していることを発見した。
論文 参考訳(メタデータ) (2024-10-23T17:42:07Z) - Exploring CausalWorld: Enhancing robotic manipulation via knowledge transfer and curriculum learning [6.683222869973898]
本研究では,指間の複雑な動きと協調を必要とする,学習に基づく三指ロボットアーム操作タスクについて検討する。
強化学習を利用することで、エージェントに熟練した操作に必要なスキルを習得するよう訓練する。
微調整とカリキュラム学習という2つの知識伝達戦略を,ソフトアクター・クリティカルなアーキテクチャで活用した。
論文 参考訳(メタデータ) (2024-03-25T23:19:19Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
我々は,対話型模倣学習と類似するが,さらに実践的な仮定の下で,非政治強化学習によってパフォーマンスが向上できることを実証する。
提案手法は,ユーザ介入信号を用いた強化学習を報奨として利用する。
このことは、インタラクティブな模倣学習において介入する専門家がほぼ最適であるべきだという仮定を緩和し、アルゴリズムが潜在的に最適でない人間の専門家よりも改善される行動を学ぶことを可能にする。
論文 参考訳(メタデータ) (2023-11-21T21:05:21Z) - Tactile Active Inference Reinforcement Learning for Efficient Robotic
Manipulation Skill Acquisition [10.072992621244042]
触覚能動推論強化学習(Tactile Active Inference Reinforcement Learning, Tactile-AIRL)と呼ばれるロボット操作におけるスキル学習手法を提案する。
強化学習(RL)の性能を高めるために,モデルに基づく手法と本質的な好奇心をRLプロセスに統合した能動推論を導入する。
本研究では,タスクをプッシュする非包括的オブジェクトにおいて,学習効率が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-11-19T10:19:22Z) - Exploiting Symmetry and Heuristic Demonstrations in Off-policy
Reinforcement Learning for Robotic Manipulation [1.7901837062462316]
本稿では,物理ロボット環境に存在する自然対称性を定義し,組み込むことを目的とする。
提案手法は,産業用アームの2つのポイント・ツー・ポイント・リーチタスクによって,障害物を伴わずに検証される。
提案手法と従来の非政治強化学習アルゴリズムとの比較研究は,アプリケーションにおける学習性能と潜在的価値の優位性を示している。
論文 参考訳(メタデータ) (2023-04-12T11:38:01Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
本稿では,ユーザが新しいタスクを定義するための"プログラミング不要"なアプローチを提供する,視覚に基づくデクスタラスな操作システムについて述べる。
本システムには,最終タスクと中間タスクを画像例で定義するためのフレームワークが組み込まれている。
実世界における多段階物体操作の4指ロボットハンドラーによる実験結果
論文 参考訳(メタデータ) (2022-12-19T22:50:40Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
近年の研究では、現実的なロボット学習の応用において、対人訓練の効果が公平なトレードオフを起こさないことが示されている。
本研究は,ロボット学習におけるロバストネスと精度のトレードオフを再考し,最近のロバストトレーニング手法と理論の進歩により,現実のロボット応用に適した対人トレーニングが可能かどうかを解析する。
論文 参考訳(メタデータ) (2022-04-15T08:12:15Z) - Learning from Guided Play: A Scheduled Hierarchical Approach for
Improving Exploration in Adversarial Imitation Learning [7.51557557629519]
本稿では,主課題,複数の補助課題に加えて,専門家による実演を活用するためのフレームワークであるLearning from Guided Play (LfGP)を紹介する。
主なタスクに対する学習効率は、ボトルネック遷移に挑戦して改善され、専門家データがタスク間で再利用可能になり、学習した補助タスクモデルの再利用を通じて学習を移行することが可能になります。
論文 参考訳(メタデータ) (2021-12-16T14:58:08Z) - Human-in-the-Loop Imitation Learning using Remote Teleoperation [72.2847988686463]
6-DoF操作設定に合わせたデータ収集システムを構築します。
システムによって収集された新しいデータに基づいて,ポリシーを反復的にトレーニングするアルゴリズムを開発した。
介入型システムで収集したデータに基づいて訓練されたエージェントと、非介入型デモ参加者が収集した同等数のサンプルで訓練されたアルゴリズムを上回るエージェントを実証する。
論文 参考訳(メタデータ) (2020-12-12T05:30:35Z) - An Empowerment-based Solution to Robotic Manipulation Tasks with Sparse
Rewards [14.937474939057596]
ロボットマニピュレータは、非常にまばらな指示信号しか提供されていなくても、タスクを達成できることを学ぶことが重要である。
本稿では,任意の標準強化学習アルゴリズムに容易に組み込むことができる本質的な動機づけ手法を提案する。
論文 参考訳(メタデータ) (2020-10-15T19:06:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。