論文の概要: Combating The Machine Ethics Crisis: An Educational Approach
- arxiv url: http://arxiv.org/abs/2004.00817v1
- Date: Thu, 2 Apr 2020 05:04:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-17 09:56:18.529851
- Title: Combating The Machine Ethics Crisis: An Educational Approach
- Title(参考訳): 機械倫理危機への対処 : 教育的アプローチ
- Authors: Tai Vu
- Abstract要約: 本研究は,人工知能教室における倫理と計算機科学教材を組み合わせた実現可能なソリューションを提案する。
本稿では,この統合アプローチの必要性と有効性を支持するいくつかの議論と証拠を提示する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the availability of massive data sets and improved computing
power have driven the advent of cutting-edge machine learning algorithms.
However, this trend has triggered growing concerns associated with its ethical
issues. In response to such a phenomenon, this study proposes a feasible
solution that combines ethics and computer science materials in artificial
intelligent classrooms. In addition, the paper presents several arguments and
evidence in favor of the necessity and effectiveness of this integrated
approach.
- Abstract(参考訳): 近年、膨大なデータセットが利用可能になり、計算能力が向上し、最先端の機械学習アルゴリズムが誕生した。
しかし、この傾向は倫理的な問題に関連する懸念の高まりを引き起こしている。
このような現象に応えて,人工知能教室における倫理と計算機科学教材を組み合わせた実現可能なソリューションを提案する。
さらに,この統合アプローチの必要性と有効性について,いくつかの議論と証拠を提示した。
関連論文リスト
- Unified Explanations in Machine Learning Models: A Perturbation Approach [0.0]
XAIとモデリング技術の不整合は、これらの説明可能性アプローチの有効性に疑念を投げかけるという望ましくない効果をもたらす可能性がある。
我々はXAI, SHapley Additive exPlanations (Shap) において, 一般的なモデルに依存しない手法に対する系統的摂動解析を提案する。
我々は、一般的な機械学習とディープラーニングの手法のスイートと、静的ケースホールドで生成された説明の正確さを定量化するためのメトリクスの中で、動的推論の設定において、相対的な特徴重要度を生成するアルゴリズムを考案した。
論文 参考訳(メタデータ) (2024-05-30T16:04:35Z) - Disentangling the Causes of Plasticity Loss in Neural Networks [55.23250269007988]
可塑性の喪失は複数の独立したメカニズムに分解できることを示す。
種々の非定常学習タスクにおいて, 層正規化と重み劣化の組み合わせは, 可塑性維持に極めて有効であることを示す。
論文 参考訳(メタデータ) (2024-02-29T00:02:33Z) - Self-consistent Validation for Machine Learning Electronic Structure [81.54661501506185]
機械学習と自己整合フィールド法を統合して,検証コストの低減と解釈可能性の両立を実現する。
これにより、積極的学習によるモデルの能力の探索が可能となり、実際の研究への統合への信頼がもたらされる。
論文 参考訳(メタデータ) (2024-02-15T18:41:35Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
我々は、生成AIと適応学習の交差研究に光を当てた。
我々は、この連合が教育における次の段階の学習形式の発展に大きく貢献するだろうと論じている。
論文 参考訳(メタデータ) (2024-02-02T23:54:51Z) - A Review of Machine Learning Techniques in Imbalanced Data and Future
Trends [0.0]
我々は,学術雑誌や会議論文から258件の査読論文を収集し,レビューした。
本研究の目的は、様々な領域における不均衡データの問題に対処するために用いられる手法の構造化されたレビューを提供することである。
論文 参考訳(メタデータ) (2023-10-11T22:14:17Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - Machine Unlearning: A Survey [56.79152190680552]
プライバシ、ユーザビリティ、および/または忘れられる権利のために、特定のサンプルに関する情報をマシンアンラーニングと呼ばれるモデルから削除する必要がある特別なニーズが生まれている。
この新興技術は、その革新と実用性により、学者と産業の両方から大きな関心を集めている。
この複雑なトピックを分析したり、さまざまなシナリオで既存の未学習ソリューションの実現可能性を比較したりした研究はない。
この調査は、未学習のテクニックに関する卓越した問題と、新しい研究機会のための実現可能な方向性を強調して締めくくった。
論文 参考訳(メタデータ) (2023-06-06T10:18:36Z) - Self-Supervised Anomaly Detection in Computer Vision and Beyond: A
Survey and Outlook [9.85256783464329]
異常検出は、サイバーセキュリティ、金融、医療など、さまざまな領域において重要な役割を担っている。
近年,深層学習モデルの顕著な成長により,この分野において大きな進歩を遂げている。
自己教師型学習の出現は、既存の最先端のアプローチよりも優れた新しいADアルゴリズムの開発を引き起こした。
論文 参考訳(メタデータ) (2022-05-10T21:16:14Z) - Offline Reinforcement Learning: Tutorial, Review, and Perspectives on
Open Problems [108.81683598693539]
オフラインの強化学習アルゴリズムは、巨大なデータセットを強力な意思決定エンジンにできるという、大きな約束を持っています。
我々は,これらの課題,特に近代的な深層強化学習手法の文脈において,読者にこれらの課題を理解することを目的としている。
論文 参考訳(メタデータ) (2020-05-04T17:00:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。