論文の概要: Brain-Inspired Computational Intelligence via Predictive Coding
- arxiv url: http://arxiv.org/abs/2308.07870v1
- Date: Tue, 15 Aug 2023 16:37:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-16 12:01:01.756037
- Title: Brain-Inspired Computational Intelligence via Predictive Coding
- Title(参考訳): 脳にインスパイアされた予測符号化による計算知能
- Authors: Tommaso Salvatori, Ankur Mali, Christopher L. Buckley, Thomas
Lukasiewicz, Rajesh P. N. Rao, Karl Friston, Alexander Ororbia
- Abstract要約: 予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
- 参考スコア(独自算出の注目度): 89.6335791546526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) is rapidly becoming one of the key technologies
of this century. The majority of results in AI thus far have been achieved
using deep neural networks trained with the error backpropagation learning
algorithm. However, the ubiquitous adoption of this approach has highlighted
some important limitations such as substantial computational cost, difficulty
in quantifying uncertainty, lack of robustness, unreliability, and biological
implausibility. It is possible that addressing these limitations may require
schemes that are inspired and guided by neuroscience theories. One such theory,
called predictive coding (PC), has shown promising performance in machine
intelligence tasks, exhibiting exciting properties that make it potentially
valuable for the machine learning community: PC can model information
processing in different brain areas, can be used in cognitive control and
robotics, and has a solid mathematical grounding in variational inference,
offering a powerful inversion scheme for a specific class of continuous-state
generative models. With the hope of foregrounding research in this direction,
we survey the literature that has contributed to this perspective, highlighting
the many ways that PC might play a role in the future of machine learning and
computational intelligence at large.
- Abstract(参考訳): 人工知能(AI)は今世紀の主要な技術の一つになりつつある。
これまでのAIの結果の大部分は、エラーバックプロパゲーション学習アルゴリズムでトレーニングされたディープニューラルネットワークを使用して達成されている。
しかし、このアプローチのユビキタスな採用は、かなりの計算コスト、不確実性の定量化の難しさ、堅牢性の欠如、信頼性の欠如、生物学的不確実性など、いくつかの重要な制限を強調している。
これらの制限に対処するには、神経科学理論にインスパイアされ、導かれるスキームを必要とする可能性がある。
pcは異なる脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用でき、変分推論において堅固な数学的根拠を持ち、連続状態生成モデルの特定のクラスに対して強力な反転スキームを提供する。
この方向への先進的な研究を期待して、我々はこの視点に寄与した文献を調査し、PCが機械学習とコンピュータ知能の将来に果たす様々な役割を浮き彫りにした。
関連論文リスト
- A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
バイオプルーシブル・クレジット・アサインメントは、事実上あらゆる学習条件と互換性があり、エネルギー効率が高い。
本稿では,人工ニューラルネットワークにおける信用代入の生体評価可能なルールをモデル化する,いくつかの重要なアルゴリズムについて検討する。
我々は,このようなアルゴリズムを実用アプリケーションでより有用にするためには,今後の課題に対処する必要があることを論じる。
論文 参考訳(メタデータ) (2024-02-16T18:05:09Z) - Neuronal Auditory Machine Intelligence (NEURO-AMI) In Perspective [0.0]
ニューラル・オーディトリー・マシン・インテリジェンス(Neuro-AMI)と競合するバイオインスパイアされた連続学習型ニューラル・ニューラル・ニューラル・ニューラル・インテリジェンス(Neuro-AMI)の概要を述べる。
本稿では,ニューラル・オーディトリー・マシン・インテリジェンス(Neuro-AMI)と競合するバイオインスパイアされた連続学習型ニューラル・ラーニング・ツールについて概説する。
論文 参考訳(メタデータ) (2023-10-14T13:17:58Z) - Reliable AI: Does the Next Generation Require Quantum Computing? [71.84486326350338]
デジタルハードウェアは、最適化、ディープラーニング、微分方程式に関する問題の解決に本質的に制約されていることを示す。
対照的に、Blum-Shub-Smale マシンのようなアナログコンピューティングモデルは、これらの制限を克服する可能性を示している。
論文 参考訳(メタデータ) (2023-07-03T19:10:45Z) - Brain-inspired learning in artificial neural networks: a review [5.064447369892274]
人工ニューラルネットワークにおける脳にインスパイアされた学習表現について概説する。
これらのネットワークの能力を高めるために, シナプス可塑性などの生物学的に妥当な機構の統合について検討する。
論文 参考訳(メタデータ) (2023-05-18T18:34:29Z) - Neurocompositional computing: From the Central Paradox of Cognition to a
new generation of AI systems [120.297940190903]
AIの最近の進歩は、限られた形態のニューロコンフォメーションコンピューティングの使用によってもたらされている。
ニューロコンポジションコンピューティングの新しい形式は、より堅牢で正確で理解しやすいAIシステムを生み出します。
論文 参考訳(メタデータ) (2022-05-02T18:00:10Z) - From Machine Learning to Robotics: Challenges and Opportunities for
Embodied Intelligence [113.06484656032978]
記事は、インテリジェンスが機械学習技術の進歩の鍵を握っていると主張している。
私たちは、インテリジェンスを具体化するための課題と機会を強調します。
本稿では,ロボット学習の最先端性を著しく向上させる研究の方向性を提案する。
論文 参考訳(メタデータ) (2021-10-28T16:04:01Z) - Next Wave Artificial Intelligence: Robust, Explainable, Adaptable,
Ethical, and Accountable [5.4138734778206]
ディープニューラルネットワークはコンピュータビジョン、音声認識、言語処理、ゲームプレイング、ロボット工学において多くの成功と新機能をもたらしている。
関連する制限は、今日のAIシステムの中で最も成功した場合でも脆さに苦しむことです。
AIシステムは、トレーニングデータから性別、人種、その他の要因に基づくバイアスを吸収し、その後の意思決定におけるバイアスをさらに大きくすることができる。
論文 参考訳(メタデータ) (2020-12-11T00:50:09Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - Memristors -- from In-memory computing, Deep Learning Acceleration,
Spiking Neural Networks, to the Future of Neuromorphic and Bio-inspired
Computing [25.16076541420544]
機械学習は、特にディープラーニングの形で、人工知能の最近の基本的な発展のほとんどを駆動している。
ディープラーニングは、オブジェクト/パターン認識、音声と自然言語処理、自動運転車、インテリジェントな自己診断ツール、自律ロボット、知識に富んだパーソナルアシスタント、監視といった分野に成功している。
本稿では、電力効率の高いインメモリコンピューティング、ディープラーニングアクセラレーター、スパイクニューラルネットワークの実装のための潜在的なソリューションとして、CMOSハードウェア技術、memristorsを超越した小説をレビューする。
論文 参考訳(メタデータ) (2020-04-30T16:49:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。