Quantifying incompatibility of quantum measurements through
non-commutativity
- URL: http://arxiv.org/abs/2110.10646v2
- Date: Mon, 22 Nov 2021 11:38:15 GMT
- Title: Quantifying incompatibility of quantum measurements through
non-commutativity
- Authors: Krzysztof Mordasewicz, J\k{e}drzej Kaniewski
- Abstract summary: Incompatible measurements are an important distinction between quantum mechanics and classical theories.
We explore a family of incompatibility measures based on non-commutativity.
We show that they satisfy some natural information-processing requirements.
We also consider the behavior of our measures under different types of compositions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The existence of incompatible measurements, i.e. measurements which cannot be
performed simultaneously on a single copy of a quantum state, constitutes an
important distinction between quantum mechanics and classical theories. While
incompatibility might at first glance seem like an obstacle, it turns to be a
necessary ingredient to achieve the so-called quantum advantage in various
operational tasks like random access codes or key distribution. To improve our
understanding of how to quantify incompatibility of quantum measurements, we
define and explore a family of incompatibility measures based on
non-commutativity. We investigate some basic properties of these measures, we
show that they satisfy some natural information-processing requirements and we
fully characterize the pairs which achieve the highest incompatibility (in a
fixed dimension). We also consider the behavior of our measures under different
types of compositions. Finally, to link our new measures to existing results,
we relate them to a robustness-based incompatibility measure and two
operational scenarios: random access codes and entropic uncertainty relations.
Related papers
- Witnessing Quantum Incompatibility Structures in High-Dimensional Multimeasurement Systems [10.275541065101345]
Quantum incompatibility is the phenomenon that some quantum measurements cannot be performed simultaneously.
We propose a modified quantum state discrimination protocol that decomposes complex compatibility structures into pairwise ones.
We experimentally demonstrate our results and connect them with quantum steering, quantum simulability and quantum communications.
arXiv Detail & Related papers (2023-06-21T09:12:51Z) - Measurement incompatibility and quantum advantage in communication [0.0]
Measurement incompatibility stipulates the existence of quantum measurements that cannot be carried out simultaneously on single systems.
We show that the set of input-output probabilities obtained from d-dimensional classical systems assisted with shared randomness is the same as the set obtained from d-dimensional quantum strategies restricted to compatible measurements with shared randomness in any communication scenario.
arXiv Detail & Related papers (2022-09-29T06:45:01Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Characterizing and quantifying the incompatibility of quantum
instruments [5.1398743023989555]
We introduce -- similarly to the case of measurements and channels -- the incompatibility of quantum instruments and derive universal bounds on it.
We prove that post-processing of quantum instruments is a free operation for parallel compatibility.
We provide families of instruments for which our bounds are tight, and families of compatible indecomposable instruments.
arXiv Detail & Related papers (2022-09-06T16:19:14Z) - Incompatibility of observables, channels and instruments in information
theories [68.8204255655161]
We study the notion of compatibility for tests of an operational probabilistic theory.
We show that a theory admits of incompatible tests if and only if some information cannot be extracted without disturbance.
arXiv Detail & Related papers (2022-04-17T08:44:29Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Experimentally determining the incompatibility of two qubit measurements [55.41644538483948]
We describe and realize an experimental procedure for assessing the incompatibility of two qubit measurements.
We demonstrate this fact in an optical setup, where the qubit states are encoded into the photons' polarization degrees of freedom.
arXiv Detail & Related papers (2021-12-15T19:01:44Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Quantum Incompatibility of a Physical Context [0.0]
We characterize quantum incompatibility as a resource encoded in a physical context, involving both the quantum state and observables.
We derive a measurement-incompatibility quantifier that is easily computable, admits a geometrical interpretation, and is maximum only if the eigenbases of the involved observables are mutually unbiased.
arXiv Detail & Related papers (2020-04-02T14:00:39Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - Incompatibility probability of random quantum measurements [3.7298088649201353]
Incompatibility of quantum measurements is of fundamental importance in quantum mechanics.
We study the necessary and sufficient conditions of quantum compatibility for a given collection of $n$ measurements in $d$-dimensional space.
arXiv Detail & Related papers (2019-12-27T19:44:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.