Triplet-Triplet Decoherence in Singlet Fission
- URL: http://arxiv.org/abs/2004.01058v1
- Date: Thu, 2 Apr 2020 15:04:29 GMT
- Title: Triplet-Triplet Decoherence in Singlet Fission
- Authors: Max Marcus and William Barford
- Abstract summary: We introduce new results from quantum information theory which enables the quantification of coherence and entanglement in a bi- and multipartite system.
We demonstrate that these observables can act as a proxy for the coherence and entanglement measures.
The decay of both of these between the two local triplets can be monitored, enabling a clear definition of the spin-decoherence process in singlet fission.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Singlet fission is commonly defined to involve a process by which an overall
singlet state with local triplet structure spin-decoheres into two triplet
states, thereby completing the fission process. This process, often defined in
loose terms involving the multiplicity of the overall state, is investigated
here using a uniform Heisenberg spin-chain subject to a dephasing environmental
interaction. We introduce new results from quantum information theory which
enables the quantification of coherence and entanglement in a bi- and
multipartite system. The calculated measures of these quantum effects can be
linked to observables, such as magnetisation and total spin, with simulations
of the model and using theoretical methods. We demonstrate that these
observables can act as a proxy for the coherence and entanglement measures. The
decay of both of these between the two local triplets can be monitored,
enabling a clear definition of the spin-decoherence process in singlet fission.
Related papers
- Tunable topological phases in nanographene-based spin-1/2
alternating-exchange Heisenberg chains [8.1791518522452]
We present a versatile platform enabling site-selective spin manipulation in many-body spin systems.
Our findings are corroborated by theoretical calculations, opening promising avenues toward the development of spin-based quantum devices.
arXiv Detail & Related papers (2024-02-21T07:45:05Z) - Measurement-Induced Transmon Ionization [69.65384453064829]
We develop a comprehensive framework which provides a physical picture of the origin of transmon ionization.
This framework identifies the multiphoton resonances responsible for transmon ionization.
It also allows one to efficiently compute numerical estimates of the photon number threshold for ionization.
arXiv Detail & Related papers (2024-02-09T18:46:50Z) - A Cooper-pair beam splitter as a feasible source of entangled electrons [0.0]
We investigate the generation of an entangled electron pair emerging from a system composed of two quantum dots attached to a superconductor Cooper pair beam splitter.
We take into account three processes: Crossed Andreev Reflection, cotuneling, and Coulomb interaction.
Several entanglement quantifiers, including quantum mutual information, negativity, and concurrence, are employed to validate our findings.
arXiv Detail & Related papers (2024-01-29T18:46:53Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Interacting bosons in a triple well: Preface of many-body quantum chaos [0.0]
We investigate the onset of quantum chaos in a triple-well model that moves away from integrability as its potential gets tilted.
Even in its deepest chaotic regime, the system presents features reminiscent of integrability.
arXiv Detail & Related papers (2021-11-26T19:00:03Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Coherent ground-state transport of neutral atoms [1.433758865948252]
We construct a theoretical model via second-order perturbation theory to realize a long-range coherent transport inside the ground-state manifold of neutral atoms system.
This model can be used to simulate various single-body physics phenomena such as Heisenberg $XX$ spin chain restricted in the single-excitation manifold.
arXiv Detail & Related papers (2021-07-06T03:59:15Z) - Witnessing quantum correlations in a nuclear ensemble via an electron
spin qubit [0.0]
A coherent ensemble of spins interfaced with a proxy qubit is an attractive platform to create many-body coherences.
An electron spin qubit in a semiconductor quantum dot can act as such an interface to the dense nuclear spin ensemble.
We demonstrate a method to probe the spin state of a nuclear ensemble that exploits its response to collective spin excitations.
arXiv Detail & Related papers (2020-12-21T12:12:43Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.