Measurement-Induced Transmon Ionization
- URL: http://arxiv.org/abs/2402.06615v2
- Date: Mon, 04 Nov 2024 15:19:08 GMT
- Title: Measurement-Induced Transmon Ionization
- Authors: Marie Frédérique Dumas, Benjamin Groleau-Paré, Alexander McDonald, Manuel H. Muñoz-Arias, Cristóbal Lledó, Benjamin D'Anjou, Alexandre Blais,
- Abstract summary: We develop a comprehensive framework which provides a physical picture of the origin of transmon ionization.
This framework identifies the multiphoton resonances responsible for transmon ionization.
It also allows one to efficiently compute numerical estimates of the photon number threshold for ionization.
- Score: 69.65384453064829
- License:
- Abstract: Despite the high measurement fidelity that can now be reached, the dispersive qubit readout of circuit quantum electrodynamics is plagued by a loss of its quantum nondemolition character and a decrease in fidelity with increased measurement strength. In this work, we elucidate the nature of this dynamical process, which we refer to as transmon ionization. We develop a comprehensive framework which provides a physical picture of the origin of transmon ionization. This framework consists of three complementary levels of descriptions: a fully quantized transmon-resonator model, a semiclassical model where the resonator is treated as a classical drive on the transmon, and a fully classical model. Crucially, all three approaches preserve the full cosine potential of the transmon and lead to similar predictions. This framework identifies the multiphoton resonances responsible for transmon ionization. It also allows one to efficiently compute numerical estimates of the photon number threshold for ionization, which are in remarkable agreement with recent experimental results. The tools developed within this work are both conceptually and computationally simple, and we expect them to become an integral part of the theoretical underpinning of all circuit QED experiments.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Application of the Schwinger Oscillator Construct of Angular Momentum to
an Interpretation of the Superconducting Transmon Qubit [0.0]
An angular-momentum-like basis is defined for quantum-entangled, two-photon states that form an angular-momentum-like basis.
This basis provides a convenient starting point to study error-inducing effects of transmon anharmonicity, surrounding-environment decoherence, and random stray fields on qubit state and gate operations.
The generality of the Schwinger angular-momentum construct allows it to be applied to other superconducting charge qubits.
arXiv Detail & Related papers (2024-01-17T19:50:12Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Non-Hermitian topological quantum states in a reservoir-engineered
transmon chain [0.0]
We show that a non-Hermitian quantum phase can be realized in a reservoir-engineered transmon chain.
We show that genuine quantum effects are observable in this system via robust and slowly decaying long-range quantum entanglement of the topological end modes.
arXiv Detail & Related papers (2022-10-06T15:21:21Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Dynamics of Transmon Ionization [94.70553167084388]
We numerically explore the dynamics of a driven transmon-resonator system under strong and nearly resonant measurement drives.
We find clear signatures of transmon ionization where the qubit escapes out of its cosine potential.
arXiv Detail & Related papers (2022-03-21T18:00:15Z) - Chiral Cavity Quantum Electrodynamics [0.0]
We explore for the first time cavity quantum electrodynamics of a transmon qubit in the topological vacuum of a Harper-Hofstadter topological lattice.
We spectroscopically resolve the individual bulk and edge modes of this lattice, detect vacuum-stimulated Rabi oscillations between the excited transmon and each mode, and thereby measure the synthetic-vacuum-induced Lamb shift of the transmon.
arXiv Detail & Related papers (2021-09-09T22:26:36Z) - Coherent ground-state transport of neutral atoms [1.433758865948252]
We construct a theoretical model via second-order perturbation theory to realize a long-range coherent transport inside the ground-state manifold of neutral atoms system.
This model can be used to simulate various single-body physics phenomena such as Heisenberg $XX$ spin chain restricted in the single-excitation manifold.
arXiv Detail & Related papers (2021-07-06T03:59:15Z) - Many-Body Quantum Zeno Effect and Measurement-Induced Subradiance
Transition [0.0]
We show that for a many-body system evolving under competing unitary evolution and variable-strength measurements the onset of the Zeno effect takes the form of a sharp phase transition.
We show that this transition is invisible to the average dynamics, but encoded in the rare fluctuations of the measurement process.
arXiv Detail & Related papers (2020-11-23T18:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.