Predicting Injectable Medication Adherence via a Smart Sharps Bin and
Machine Learning
- URL: http://arxiv.org/abs/2004.01144v1
- Date: Thu, 2 Apr 2020 17:16:51 GMT
- Title: Predicting Injectable Medication Adherence via a Smart Sharps Bin and
Machine Learning
- Authors: Yingqi Gu, Akshay Zalkikar, Lara Kelly, Kieran Daly, Tomas E. Ward
- Abstract summary: We make predictions regarding individual patients' behaviour in terms of taking their medication on time during their next scheduled medication opportunity.
We do this by leveraging a number of machine learning models.
The proposed machine learning approach demonstrated very good predictive performance exhibiting an Area Under the Receiver Operating Characteristic Curve (ROC AUC) of 0.86.
- Score: 0.9869634509510016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medication non-adherence is a widespread problem affecting over 50% of people
who have chronic illness and need chronic treatment. Non-adherence exacerbates
health risks and drives significant increases in treatment costs. In order to
address these challenges, the importance of predicting patients' adherence has
been recognised. In other words, it is important to improve the efficiency of
interventions of the current healthcare system by prioritizing resources to the
patients who are most likely to be non-adherent. Our objective in this work is
to make predictions regarding individual patients' behaviour in terms of taking
their medication on time during their next scheduled medication opportunity. We
do this by leveraging a number of machine learning models. In particular, we
demonstrate the use of a connected IoT device; a "Smart Sharps Bin", invented
by HealthBeacon Ltd.; to monitor and track injection disposal of patients in
their home environment. Using extensive data collected from these devices, five
machine learning models, namely Extra Trees Classifier, Random Forest, XGBoost,
Gradient Boosting and Multilayer Perception were trained and evaluated on a
large dataset comprising 165,223 historic injection disposal records collected
from 5,915 HealthBeacon units over the course of 3 years. The testing work was
conducted on real-time data generated by the smart device over a time period
after the model training was complete, i.e. true future data. The proposed
machine learning approach demonstrated very good predictive performance
exhibiting an Area Under the Receiver Operating Characteristic Curve (ROC AUC)
of 0.86.
Related papers
- An Efficient Contrastive Unimodal Pretraining Method for EHR Time Series Data [35.943089444017666]
We propose an efficient method of contrastive pretraining tailored for long clinical timeseries data.
Our model demonstrates the ability to impute missing measurements, providing clinicians with deeper insights into patient conditions.
arXiv Detail & Related papers (2024-10-11T19:05:25Z) - Automatic prediction of mortality in patients with mental illness using
electronic health records [0.5957022371135096]
This paper addresses the persistent challenge of predicting mortality in patients with mental diagnoses.
Data from patients with mental disease diagnoses were extracted from the well-known clinical MIMIC-III data set.
Four machine learning algorithms were used, with results indicating that Random Forest and Support Vector Machine models outperformed others.
arXiv Detail & Related papers (2023-10-18T17:21:01Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Remote Medication Status Prediction for Individuals with Parkinson's
Disease using Time-series Data from Smartphones [75.23250968928578]
We present a method for predicting the medication status of Parkinson's disease patients using the public mPower dataset.
The proposed method shows promising results in predicting three medication statuses objectively.
arXiv Detail & Related papers (2022-07-26T02:08:08Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
We propose a new method that uses medical text of Electronic Health Records for prediction.
We represent discharge summaries of patients with multiview graphs enhanced by an external knowledge graph.
Experimental results prove the effectiveness of our method, yielding state-of-the-art performance.
arXiv Detail & Related papers (2021-12-19T01:45:57Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - Survival Prediction of Heart Failure Patients using Stacked Ensemble
Machine Learning Algorithm [0.0]
Heart failure is one of the major health hazard issues of our time and is a leading cause of death worldwide.
Data mining is the process of converting massive volumes of raw data created by the healthcare institutions into meaningful information.
Our study shows that only certain attributes collected from the patients are imperative to successfully predict the surviving possibility post heart failure.
arXiv Detail & Related papers (2021-08-30T16:42:27Z) - Self-Supervised Graph Learning with Hyperbolic Embedding for Temporal
Health Event Prediction [13.24834156675212]
We propose a hyperbolic embedding method with information flow to pre-train medical code representations in a hierarchical structure.
We incorporate these pre-trained representations into a graph neural network to detect disease complications.
We present a new hierarchy-enhanced historical prediction proxy task in our self-supervised learning framework to fully utilize EHR data.
arXiv Detail & Related papers (2021-06-09T00:42:44Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - A Machine Learning Early Warning System: Multicenter Validation in
Brazilian Hospitals [4.659599449441919]
Early recognition of clinical deterioration is one of the main steps for reducing inpatient morbidity and mortality.
Since hospital wards are given less attention compared to the Intensive Care Unit, ICU, we hypothesized that when a platform is connected to a stream of EHR, there would be a drastic improvement in dangerous situations awareness.
With the application of machine learning, the system is capable to consider all patient's history and through the use of high-performing predictive models, an intelligent early warning system is enabled.
arXiv Detail & Related papers (2020-06-09T21:21:38Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.